Organic Chemistry (9th Edition)
9th Edition
ISBN: 9780321971371
Author: Leroy G. Wade, Jan W. Simek
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2.10, Problem 2.13P
Write equations for the following acid-base reactions Label the conjugate acids and bases and show any inductive stabilization Predict whether the equilibrium favors the reactants or products Try to do this without using a table of pKa values, but if you need a hint, you can consult Appendix 4.
- a. CH3CH2OH + CH3NH−
- b. F3CCOONa + Br3C—COOH
- c. CH3OH + H2SO4
- d. NaOH + H2S
- e. CH3NH3+ + CH3O+
- f. BrCH2CH2OH + F3C—CH2O
- g. NaOCH2CH3 + CI2CHCH2OH
- h. H2Se + NaNH2
- i. CH3CHFCOOH + FCH2CH2COO−
- j. CF3CH2O− + FCH2CH2OH
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
#8
Make an EXPERIMENTAL PROCEDURE of indomethacin that includes the laboratory techniques to be used in the synthesis.
Ps. The attached image is the synthesis of indomethacin
2. For the acid-base reactions given, draw out the full reaction
using Lewis structures and curved arrows to indicate how
the reaction takes place.
Predict whether the equilibrium position would lie to
the right or the left. Explain your reasoning.
NH, + HOD NH +OH
a.
b.
NH, + HO D NH + OH
Chapter 2 Solutions
Organic Chemistry (9th Edition)
Ch. 2.1A - Prob. 2.1PCh. 2.1B - The NF bond is more polar than the NH bond: but...Ch. 2.1B - For each of the following compounds 1. Draw the...Ch. 2.1B - Two isomers of 1,2-dichloroethene are known One...Ch. 2.2C - Prob. 2.5PCh. 2.2C - Prob. 2.6PCh. 2.3 - Prob. 2.7PCh. 2.4 - Calculate the pH of the following solutions a....Ch. 2.6A - Ammonia appears in Table 2-2 as both an acid and a...Ch. 2.7 - Write equations for the following acid-base...
Ch. 2.7 - Ethanol, methylamine. and acetic acid are all...Ch. 2.8 - Prob. 2.12PCh. 2.10 - Write equations for the following acid-base...Ch. 2.10 - Rank the following acids in decreasing order of...Ch. 2.11 - Prob. 2.15PCh. 2.11 - Prob. 2.16PCh. 2.11 - Consider each pair of bases and explain which one...Ch. 2.12 - Which is a stronger base ethoxide ion or acetate...Ch. 2.12 - Prob. 2.19PCh. 2.12 - Prob. 2.20PCh. 2.12 - Prob. 2.21PCh. 2.12 - Choose the more basic member of each pair of...Ch. 2.14 - Prob. 2.23PCh. 2.15D - Classify the following hydrocarbons and draw a...Ch. 2.16D - Prob. 2.25PCh. 2.17C - Draw a Lewis structure and classify each of the...Ch. 2.17C - Circle the functional groups in the following...Ch. 2 - The CN triple bond in acetonitrile has a dipole...Ch. 2 - Prob. 2.29SPCh. 2 - Sulfur dioxide has a dipole moment of 1.60 D....Ch. 2 - Which of the following pure compounds can form...Ch. 2 - Predict which member of each pair is more soluble...Ch. 2 - Prob. 2.33SPCh. 2 - Prob. 2.34SPCh. 2 - Predict which compound in each pair has the higher...Ch. 2 - All of the following compounds can react as acids...Ch. 2 - Rank the following species in order of increasing...Ch. 2 - Rank the following species in order of increasing...Ch. 2 - The Ka of phenylacetic acid is 5 2 105, and the...Ch. 2 - The following compound can become protonated on...Ch. 2 - The following compounds are listed in increasing...Ch. 2 - Prob. 2.42SPCh. 2 - Prob. 2.43SPCh. 2 - Compare the relative acidity of 1-molar aqueous...Ch. 2 - The following compounds can all react as acids. a....Ch. 2 - The following compounds can all react as bases. a....Ch. 2 - The following compounds can all react as acids. a....Ch. 2 - Prob. 2.48SPCh. 2 - Methyllithium (CH3Li) is often used as a base in...Ch. 2 - Label the reactants in these acid-base reactions...Ch. 2 - In each reaction, label the reactants as Lewis...Ch. 2 - Prob. 2.52SPCh. 2 - Each of these compounds can react as a nucleophile...Ch. 2 - Prob. 2.54SPCh. 2 - Give a definition and an example for each class of...Ch. 2 - Circle the functional groups in the following...Ch. 2 - Prob. 2.57SP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Explain the difference between a strong acid and a weak acid.arrow_forwardSeveral acids and their respective equilibrium constants are: Which is the strongest acid? Which is the weakest acid? Which acid has the weakest conjugate base? Which acid has the strongest conjugate base?arrow_forwardFor oxyacids, how does acid strength depend on a. the strength of the bond to the acidic hydrogen atom? b. the electronegativity of the element bonded to the oxygen atom that bears the acidic hydrogen? c. the number of oxygen atoms? How does the strength of a conjugate base depend on these factors? What type of solution forms when a nonmetal oxide dissolves in water? Give an example of such an oxide. What type of solution forms when a metal oxide dissolves in water? Give an example of such an oxide.arrow_forward
- Which of the following will increase the percent of NH3 that is converted to the ammonium ion in water (Hint: Use LeChatelier’s principle.)? (a) addition of NaOH. (b) addition of HCl. (c) addition of NH4Clarrow_forward. Strong buses are bases that completely ionize in water to produce hydroxide ion, OH-. The strong bases include the hydroxides of the Group I elements. For example, if 1.0 mole of NaOH is dissolved per liter, the concentration of OH ion is 1.0 M. Calculate the [OH-], pOH, and pH for each of the following strong base solutions. a. 1.10 M NaOH b. 2.0104M KOH c. 6.2103M CsOH d. 0.0001 M NaOHarrow_forwardCompare the percent dissociation of the acid in Exercise 21a with the percent dissociation of the acid in Exercise 21d. Explain the large difference in percent dissociation of the acid.arrow_forward
- Each box represents an acid solution at equilibrium. Squares represent H+ ions. Circles represent anions. (Although the anions have different identities in each figure, they are all represented as circles.) Water molecules are not shown. Assume that all solutions have the same volume. (a) Which figure represents the strongest acid? (b) Which figure represents the acid with the smallest Ka? (c) Which figure represents the acid with the lowest pH?arrow_forwardComplete a net ionic equation for each proton-transfer reaction using curved arrows to show the flow of electron pairs in each reaction. In addition, write Lewis structures for all starting materials and products. Label the original acid and its conjugate base; label the original base and its conjugate acid. If you are uncertain about which substance in each equation is the proton donor, refer to Table 4.1 for the relative strengths of proton acids. (a) NH3+HCl (b) CH3CH2O+HCl (c) HCO3+OH (d) CH3COO+NH4+arrow_forwardIn each of the following acid-base reactions, identify the Brnsted acid and base on the left and their conjugate partners on the right. (a) C2H5N(aq) + CH3CO2H(aq) C5H5NH+(aq) + CH3CO2(aq) (b) N2H4(aq) + HSO4(aq) N2H5+(aq) + SO42(aq) (c) [Al(H2O)6]3+ (aq) + OH(aq) [Al(H2O)5OH]2+ (aq) + H2O+()arrow_forward
- How do the components of a conjugate acid—base pair differ from one another4? Give an example of a conjugate acid—base pair to illustrate your answer.arrow_forward. The following are representations of acid-base reactions: a. Label each of the species in both equations as an acid or base, and explain. b. For those species that are acids, which labels apply: Arrhenius acid, Brønsted-Lowry acid? What about the bases?arrow_forwardHow is acid strength related to the value of Ka? What is the difference between strong acids and weak acids (see Table 13-1)? As the strength of an acid increases, what happens to the strength of the conjugate base? How is base strength related to the value of Kb? As the strength of a base increases, what happens to the strength of the conjugate acid?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
General Chemistry | Acids & Bases; Author: Ninja Nerd;https://www.youtube.com/watch?v=AOr_5tbgfQ0;License: Standard YouTube License, CC-BY