Concept explainers
a.
To determine:
Whether the population is at Hardy-Weinberg equilibrium with respect to Q and R genes.
Introduction:
Geoffrey H. Hardy was a scientist who proposed the concept of Hardy-Weinberg equilibrium. This concept is used to associate the allele frequency with the genotype frequency. The populations that have allele frequency and the genotypic frequency at equilibrium follow the concept of Hardy-Weinberg equilibrium.
![Check Mark](/static/check-mark.png)
Explanation of Solution
The given information is as follows:
The frequency of all the genotypes is as follows:
No. | Genotypes | Frequency |
1. | QFQF RCRC | |
2. | QFQG RCRC | |
3. | QGQG RCRC | |
4. | QFQF RCRD | |
5. | QFQG RCRD | |
6. | QGQG RCRD | |
7. | QFQF RDRD | |
8. | QFQG RCRD | |
9. | QGQG RCRD |
The observed genotype frequencies of Q gene are not close to the expected genotype frequencies. This indicates that the population is not at equilibrium for Q gene.
The observed genotype frequencies of R gene are close to the expected genotype frequencies. This reflects that the population is at equilibrium for R gene.
Thus, the population is at Hardy-Weinberg equilibrium with respect to R gene.
b.
To determine:
The fraction of population in the next generation that will be QF QF.
Introduction:
QF and QG are two alleles of gene Q. This gene codes for a particular type of red blood cells. The gene Q plays a crucial role in a particular blood grouping type.
![Check Mark](/static/check-mark.png)
Explanation of Solution
The given information is as follows:
No. | Genotypes | Frequency |
1. | QFQF RCRC | |
2. | QFQF RCRD | |
3. | QFQF RDRD |
Thus, the fraction of population in the next generation that will be QF QF is 0.39.
c.
To determine:
The fraction of population in the next generation that will be RC RC.
Introduction:
RC and RD are two alleles of gene R. This gene also codes for a particular type of red blood cells. However, the blood group typing of R gene is different from the blood group typing of the Q gene.
![Check Mark](/static/check-mark.png)
Explanation of Solution
The given information is as follows:
No. | Genotypes | Frequency |
1. | QFQF RCRC | |
2. | QFQG RCRC | |
3. | QGQG RCRC |
Thus, the fraction of the population in the next generation that will be RC RC is 0.27.
d.
To determine:
The chance that the first child of a QC QG RC RD female and a QF QF RC RD male will be QF QG RD RD male.
Introduction
The process by which a male fertilizes with a female to produce an offspring is termed as reproduction. This is an important process to maintain the population of an organism in the environment. The chances that the offspring would be a male or a female depend upon both the parents.
![Check Mark](/static/check-mark.png)
Explanation of Solution
The parents are homozygous for the R gene. This reflects that:
The overall probability that the child would be QF QG RD RD male can be calculated as:
Thus, the chance that the first child of a QC QG RC RD female and a QF QF RC RD male will be QF QG RD RD male is 1/16.
Want to see more full solutions like this?
Chapter 21 Solutions
GENETICS:FROM GENES TO GENOMES(LL)-PKG
- 18. Watch this short youtube video about SARS CoV-2 replication. SARS-CoV-2 Life Cycle (Summer 2020) - YouTube.19. What is the name of the receptor that SARS CoV-2 uses to enter cells? Which human cells express this receptor? 20. Name a few of the proteins that the SARS CoV-2 mRNA codes for. 21. What is the role of the golgi apparatus related to SARS CoV-2arrow_forwardState the five functions of Globular Proteins, and give an example of a protein for each function.arrow_forwardDiagram of check cell under low power and high powerarrow_forward
- a couple in which the father has the a blood type and the mother has the o blood type produce an offspring with the o blood type, how does this happen? how could two functionally O parents produce an offspring that has the a blood type?arrow_forwardWhat is the opening indicated by the pointer? (leaf x.s.) stomate guard cell lenticel intercellular space none of thesearrow_forwardIdentify the indicated tissue? (stem x.s.) parenchyma collenchyma sclerenchyma ○ xylem ○ phloem none of thesearrow_forward
- Where did this structure originate from? (Salix branch root) epidermis cortex endodermis pericycle vascular cylinderarrow_forwardIdentify the indicated tissue. (Tilia stem x.s.) parenchyma collenchyma sclerenchyma xylem phloem none of thesearrow_forwardIdentify the indicated structure. (Cucurbita stem l.s.) pit lenticel stomate tendril none of thesearrow_forward
- Identify the specific cell? (Zebrina leaf peel) vessel element sieve element companion cell tracheid guard cell subsidiary cell none of thesearrow_forwardWhat type of cells flank the opening on either side? (leaf x.s.) vessel elements sieve elements companion cells tracheids guard cells none of thesearrow_forwardWhat specific cell is indicated. (Cucurbita stem I.s.) vessel element sieve element O companion cell tracheid guard cell none of thesearrow_forward
- Human Heredity: Principles and Issues (MindTap Co...BiologyISBN:9781305251052Author:Michael CummingsPublisher:Cengage LearningHuman Biology (MindTap Course List)BiologyISBN:9781305112100Author:Cecie Starr, Beverly McMillanPublisher:Cengage Learning
- Biology (MindTap Course List)BiologyISBN:9781337392938Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. BergPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305251052/9781305251052_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305112100/9781305112100_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337392938/9781337392938_smallCoverImage.gif)