EBK WEBASSIGN FOR KATZ'S PHYSICS FOR SC
EBK WEBASSIGN FOR KATZ'S PHYSICS FOR SC
1st Edition
ISBN: 9781337684668
Author: Katz
Publisher: VST
bartleby

Videos

Question
Book Icon
Chapter 21, Problem 77PQ

(a)

To determine

The work done on the lead block in the process.

(a)

Expert Solution
Check Mark

Answer to Problem 77PQ

The work done on the lead block in the process is 0.279J_.

Explanation of Solution

Given that the mass of the lead block is 10.0kg, the temperature of the block is increased from 18.0°C to 55.0°C, the pressure remains constant at 1.00atm. The coefficient of linear expansion of lead is 28.0×106°C1.

Write the expression for the work done at constant pressure.

  W=PΔV                                                                                                        (I)

Here, W is the work done at constant pressure, P is the pressure, and ΔV is the change in volume of the block.

Write the expression for the change in the volume of lead block when its temperature changes.

  ΔV=βV(TfTi)                                                                                            (II)

Here, β is the coefficient of volume expansion, V is the initial volume of the block, Tf is the final temperature of the block, and Ti is the initial temperature of the block.

Write the expression for the coefficient of volume expansion in terms of the coefficient of linear expansion.

  β=3α                                                                                                                    (III)

Here, α is the coefficient of linear expansion of the lead block.

Use expression (III) in (II).

  ΔV=(3α)V(TfTi)                                                                                       (IV)

Write the expression for the volume of the lead block in terms of its mass and density.

  V=mρ                                                                                                              (V)

Here, m is the mass of the block, and ρ is the density of the block.

Use expression (V) in (IV).

  ΔV=mρ(3α)(TfTi)                                                                                 (VI)

Use expression (VI) in (I).

  W=P[mρ(3α)(TfTi)]                                                                             (VII)

Conclusion:

Substitute 1.00atm for P, 28.0×106°C1 for α, 10.0kg for m, 11.3×103kg/m3 for ρ, 55.0°C for Tf, and 18.0°C for Ti in equation (VII) to find W.

  W=(1.00atm×1.013×105N/m21.00atm)[3(28.0×106°C1)(10.0kg11.3×103kg/m3)(55.0°C18.0°C)]=0.279J

Therefore, the work done on the lead block when the temperature increases is 0.279J_.

(b)

To determine

The amount of energy added to the block by heat in the process.

(b)

Expert Solution
Check Mark

Answer to Problem 77PQ

The amount of energy added to the block by heat in the process is 47.4kJ_.

Explanation of Solution

Write the expression for the heat added up into the block while heating.

  Q=mc(TfTi)                                                                                           (VIII)

Here, Q is the energy or heat added to the block, and c is the specific heat capacity of lead.

Conclusion:

Substitute 128J/kg°C for c, 10.0kg for m, 55.0°C for Tf, and 18.0°C for Ti in equation (VIII) to find Q.

  Q=(128J/kg°C)(10.0kg)(55.0°C18.0°C)=0.474×102J=0.474×105J×1kJ1000J=47.4kJ

Therefore, the amount of energy added to the block by heat is 47.4kJ_.

(c)

To determine

The change in the internal energy of the block during the process.

(c)

Expert Solution
Check Mark

Answer to Problem 77PQ

The change in thermal energy of the block during the process is 47.4kJ_.

Explanation of Solution

The change in thermal energy of the block is equal to the sum of heat added up to the system and the work done.

Write the expression for the change in thermal energy of the block.

  ΔEth=Q+W                                                                                                (IX)

Here, ΔEth is the change in the thermal energy of block.

Conclusion:

Substitute 47.4kJ for Q, and 0.279J for W in equation (IX) to find ΔEth.

  ΔEth=47.4kJ0.279J×1kJ1000J=47.4kJ

Therefore, the change in thermal energy of the block during the process is 47.4kJ_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
In (Figure 1) C1 = 6.00 μF, C2 = 6.00 μF, C3 = 12.0 μF, and C4 = 3.00 μF. The capacitor network is connected to an applied potential difference Vab. After the charges on the capacitors have reached their final values, the voltage across C3 is 40.0 V. What is the voltage across C4? What is the voltage Vab applied to the network? Please explain everything in steps.
I need help with these questions again. A step by step working out with diagrams that explains more clearly
In a certain region of space the electric potential is given by V=+Ax2y−Bxy2, where A = 5.00 V/m3 and B = 8.00 V/m3. Calculate the direction angle of the electric field at the point in the region that has cordinates x = 2.50 m, y = 0.400 m, and z = 0. Please explain. The answer is not 60, 120, or 30.

Chapter 21 Solutions

EBK WEBASSIGN FOR KATZ'S PHYSICS FOR SC

Ch. 21 - Prob. 2PQCh. 21 - You extend an impromptu invitation to a friend for...Ch. 21 - Prob. 4PQCh. 21 - Prob. 5PQCh. 21 - Prob. 6PQCh. 21 - Prob. 7PQCh. 21 - Prob. 8PQCh. 21 - Prob. 9PQCh. 21 - Prob. 10PQCh. 21 - Prob. 11PQCh. 21 - Prob. 12PQCh. 21 - Prob. 13PQCh. 21 - Prob. 14PQCh. 21 - Prob. 15PQCh. 21 - Prob. 16PQCh. 21 - Prob. 17PQCh. 21 - Prob. 18PQCh. 21 - Prob. 19PQCh. 21 - From Table 21.1, the specific heat of milk is 3.93...Ch. 21 - Prob. 21PQCh. 21 - Prob. 22PQCh. 21 - An ideal gas is confined to a cylindrical...Ch. 21 - Prob. 24PQCh. 21 - You place frozen soup (T = 17C) in a microwave...Ch. 21 - A 25-g ice cube at 0.0C is heated. After it first...Ch. 21 - Prob. 27PQCh. 21 - Prob. 28PQCh. 21 - Prob. 29PQCh. 21 - Prob. 30PQCh. 21 - Consider the latent heat of fusion and the latent...Ch. 21 - Prob. 32PQCh. 21 - Prob. 33PQCh. 21 - A thermodynamic cycle is shown in Figure P21.34...Ch. 21 - Prob. 35PQCh. 21 - Figure P21.36 shows a cyclic thermodynamic process...Ch. 21 - Figure P21.37 shows a PV diagram for a gas that is...Ch. 21 - Prob. 38PQCh. 21 - Prob. 39PQCh. 21 - Prob. 40PQCh. 21 - Prob. 41PQCh. 21 - Prob. 42PQCh. 21 - Prob. 43PQCh. 21 - Prob. 44PQCh. 21 - Figure P21.45 shows a cyclic process ABCDA for...Ch. 21 - Prob. 46PQCh. 21 - Prob. 47PQCh. 21 - Prob. 48PQCh. 21 - Prob. 49PQCh. 21 - Prob. 50PQCh. 21 - Prob. 51PQCh. 21 - Prob. 52PQCh. 21 - Prob. 53PQCh. 21 - Prob. 54PQCh. 21 - Prob. 55PQCh. 21 - You extend an impromptu invitation to a friend for...Ch. 21 - Prob. 57PQCh. 21 - Prob. 58PQCh. 21 - A lake is covered with ice that is 2.0 cm thick....Ch. 21 - A concerned mother is dressing her child for play...Ch. 21 - Prob. 61PQCh. 21 - Prob. 62PQCh. 21 - Prob. 63PQCh. 21 - Prob. 64PQCh. 21 - Prob. 65PQCh. 21 - Prob. 66PQCh. 21 - Prob. 67PQCh. 21 - Prob. 68PQCh. 21 - Three 100.0-g ice cubes initially at 0C are added...Ch. 21 - Prob. 70PQCh. 21 - Prob. 71PQCh. 21 - Prob. 72PQCh. 21 - Prob. 73PQCh. 21 - Prob. 74PQCh. 21 - Prob. 75PQCh. 21 - Prob. 76PQCh. 21 - Prob. 77PQCh. 21 - Prob. 78PQCh. 21 - How much faster does a cup of tea cool by 1C when...Ch. 21 - The PV diagram in Figure P21.80 shows a set of...Ch. 21 - Prob. 81PQCh. 21 - Prob. 82PQCh. 21 - Prob. 83PQCh. 21 - Prob. 84PQCh. 21 - Prob. 85PQ
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Thermodynamics: Crash Course Physics #23; Author: Crash Course;https://www.youtube.com/watch?v=4i1MUWJoI0U;License: Standard YouTube License, CC-BY