Physics (5th Edition)
5th Edition
ISBN: 9780321976444
Author: James S. Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 21, Problem 60PCE
Two batteries and three resistors are connected as shown in Figure 21-49. How much current flows through each battery when the switch is (a) closed and (b) open?
Figure 21-49
Problem 60
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Additional Problems
70 Go Each of the six real batteries in
Fig. 27-68 has an emf of 20 V and a resistance
of 4.0 n. (a) What is the current through the
(external) resistance R = 4.0 0? (b) What is
the potential difference across each battery?
(c) What is the power of each battery? (d) At
what rate does each battery transfer energy
to internal thermal energy?
Figure 27-68
Problem 70.
94 Figure 27-79 shows three 20.0 2
resistors. Find the equivalent resist-
ance between points (a) A and B, (b)
A and C, and (c) B and C. (Hint: A
Imagine that a battery is connected
between a given pair of points.)
Figure 27-79 Problem 94.
The solution must be typed out, use variable space if applicable, it must be in the simplest manner, need to ensure significant figures are accurate
Chapter 21 Solutions
Physics (5th Edition)
Ch. 21.1 - Enhance Your Understanding 1. The following...Ch. 21.2 - Enhance Your Understanding 2. If the voltage and...Ch. 21.3 - Enhance Your Understanding 3. In the following...Ch. 21.4 - The two circuits shown in Figure 21-17 have...Ch. 21.5 - Prob. 5EYUCh. 21.6 - Do two capacitors give a larger equivalent...Ch. 21.7 - Give a symbolic expression for the current that...Ch. 21 - Your body is composed of electric charges. Does it...Ch. 21 - Suppose you charge a comb by rubbing it through...Ch. 21 - An electron moving through a wire has an average...
Ch. 21 - Are car headlights connected in series or...Ch. 21 - Is it possible to connect a group of resistors of...Ch. 21 - What physical quantity do resistors connected in...Ch. 21 - What physical quantity do resistors connected in...Ch. 21 - Explain how electrical devices can begin operating...Ch. 21 - Explain the difference between resistivity and...Ch. 21 - Explain why birds can roost on high-voltage wires...Ch. 21 - Consider the circuit shown in Figure 21-36, in...Ch. 21 - A flashlight bulb carries a current of 0.38 A for...Ch. 21 - Predict/Calculate A car battery does 360 J of work...Ch. 21 - Highly sensitive ammeters can measure currents as...Ch. 21 - A television set connected to a 120-V outlet...Ch. 21 - BIO Pacemaker Batteries Pacemakers designed for...Ch. 21 - A conducting wire is quadrupled in length and...Ch. 21 - Figure 21-37 shows a plot of current versus...Ch. 21 - Predict/Explain Current-versus-voltage plots for...Ch. 21 - Prob. 9PCECh. 21 - When a potential difference of 12 V is applied to...Ch. 21 - Prob. 11PCECh. 21 - Prob. 12PCECh. 21 - Transcranial Direct-Current Stimulation In a tDCS...Ch. 21 - The four conducting cylinders shown in Figure...Ch. 21 - Predict/Calculate A bird lands on a bare copper...Ch. 21 - Prob. 16PCECh. 21 - Predict/Calculate BIO Current Through a Cell...Ch. 21 - Prob. 18PCECh. 21 - Prob. 19PCECh. 21 - BIO Resistance and Current in the Human Finger The...Ch. 21 - If a potential difference V is maintained between...Ch. 21 - Light A has four times the power rating of light B...Ch. 21 - Two lightbulbs operate on the same potential...Ch. 21 - Problems and Conceptual Exercises Section 21-3...Ch. 21 - A 65-V generator supplies 4.8 kW of power. How...Ch. 21 - A portable CD player operates with a current of 18...Ch. 21 - Find the power dissipated in a 22- electric heater...Ch. 21 - The current in a 120-V reading lamp is 2.6 A. If...Ch. 21 - Circuit A in a house has a voltage of 208 V and is...Ch. 21 - Predict/Calculate A 65-W lightbulb operates on a...Ch. 21 - Rating Car Batteries Car batteries are rated by...Ch. 21 - Predict/Explain A dozen identical lightbulbs are...Ch. 21 - A circuit consists of three resistors, R1 R2 R3,...Ch. 21 - Predict/Explain Two resistors are connected in...Ch. 21 - What is the minimum number of 88- resistors that...Ch. 21 - Find the equivalent resistance between points A...Ch. 21 - A 9.00-V battery is connected across the terminals...Ch. 21 - Holiday Lights In a string of holiday lights, 50...Ch. 21 - Your toaster has a power cord with a resistance of...Ch. 21 - Prob. 40PCECh. 21 - Predict/Calculate Three resistors, 11, 53 , and R,...Ch. 21 - A circuit consists of a battery connected to three...Ch. 21 - Predict/Calculate Three resistors, 22 , 67 , and...Ch. 21 - Prob. 44PCECh. 21 - The equivalent resistance between points A and B...Ch. 21 - Find the equivalent resistance between points A...Ch. 21 - How many 23-W lightbulbs can be connected in...Ch. 21 - The circuit in Figure 21-43 includes a battery...Ch. 21 - Predict/Calculate A 12-V battery is connected to...Ch. 21 - Predict/Calculate The terminals A and B in Figure...Ch. 21 - Predict/Calculate Suppose the battery in Figure...Ch. 21 - Predict/Calculate The current flowing through the...Ch. 21 - Predict/Calculate Four identical resistors are...Ch. 21 - Find the magnitude and direction (clockwise or...Ch. 21 - Predict/Calculate Suppose the polarity of the...Ch. 21 - Predict/Calculate It is given that point A in...Ch. 21 - Consider the circuit shown in Figure 21-47. Find...Ch. 21 - Suppose point A is grounded (V = 0) in Figure...Ch. 21 - Predict/Calculate (a) Find the current in each...Ch. 21 - Two batteries and three resistors are connected as...Ch. 21 - Two capacitors, C1 = C and C2 = 2C, are connected...Ch. 21 - Predict/Explain Two capacitors are connected in...Ch. 21 - Predict/Explain Two capacitors are connected in...Ch. 21 - A 252-F capacitor is connected in series with a...Ch. 21 - A 36-F capacitor is connected in parallel with an...Ch. 21 - Find the equivalent capacitance between points A...Ch. 21 - A 15-V battery is connected to three capacitors in...Ch. 21 - Three different circuits, each containing a switch...Ch. 21 - Terminals A and B in Figure 21-50 are connected to...Ch. 21 - Predict/Calculate You would like to add a second...Ch. 21 - Two capacitors, one 7.5 F and the other 15 F, are...Ch. 21 - The equivalent capacitance of the capacitors shown...Ch. 21 - With the switch in position A, the 11.2-F...Ch. 21 - The switch on an RC circuit is closed at t = 0....Ch. 21 - The capacitor in an RC circuit (R = 120 , C = 45...Ch. 21 - Three RC circuits have the emf, resistance, and...Ch. 21 - Consider an RC circuit with = 12.0 V, R = 195 ,...Ch. 21 - The resistor in an RC circuit has a resistance of...Ch. 21 - A flash unit for a camera has a capacitance of...Ch. 21 - Figure 21-54 shows a simplified circuit for a...Ch. 21 - Nerve Impulse Propagation The speed with which...Ch. 21 - Predict/Calculate Consider the RC circuit shown in...Ch. 21 - CE Consider the circuit shown in Figure 21-56, in...Ch. 21 - CE Predict/Explain (a) Referring to Problem 83 and...Ch. 21 - CE Consider the circuit shown in Figure 21-57, in...Ch. 21 - CE Predict/Explain (a) When the switch is closed...Ch. 21 - Suppose that points A and B in Figure 21-41 are...Ch. 21 - CE The circuit shown in Figure 21-58 shows a...Ch. 21 - CE The three circuits shown in Figure 21-59 have...Ch. 21 - Electrical Safety Codes For safety reasons,...Ch. 21 - A portable CD player uses a current of 7.5 mA at a...Ch. 21 - An electrical heating coil is immersed in 6.6 kg...Ch. 21 - Predict/Calculate Consider the circuit shown in...Ch. 21 - Prob. 94GPCh. 21 - BIO Pacemaker Pulses A pacemaker sends a pulse to...Ch. 21 - Three resistors (R,12R,2R) are connected to a...Ch. 21 - Predict/Calculate Suppose we connect a 12.0-V...Ch. 21 - National Electric Code In the United States, the...Ch. 21 - Solar Panel Power The current-versus-voltage plot...Ch. 21 - Predict/Calculate A 15.0-V battery is connected to...Ch. 21 - When two resistors, R1 and R2, are connected in...Ch. 21 - The circuit shown in Figure 21-62 is known as a...Ch. 21 - BIO Footwear Safety The American National...Ch. 21 - BIO Footwear Safety The American National...Ch. 21 - BIO Footwear Safety The American National...Ch. 21 - The standard specifies that footwear should be...Ch. 21 - Referring to Example 21-13 Suppose the three...Ch. 21 - Referring to Example 21-13 Suppose R1 = R2 = 225 ...Ch. 21 - Predict/Calculate Referring to Example 21-18...Ch. 21 - Predict/Calculate Referring to Example 21-18...
Additional Science Textbook Solutions
Find more solutions based on key concepts
2. Julie drives 100 mi to Grandmother’s house. On the way to Grandmother’s, Julie drives half the distance at 4...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
What is the anatomical position? Why is it important that you learn this position?
Anatomy & Physiology (6th Edition)
A human female with Turner syndrome (47, X) also expresses the X-linked trait hemophilia, as did her father. Wh...
Concepts of Genetics (12th Edition)
10.71 Identify each of the following as an acid or a base: (10.1)
H2SO4
RbOH
Ca(OH)2
HI
...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Using the pKa values listed in Table 15.1, predict the products of the following reactions:
Organic Chemistry (8th Edition)
Choose the best answer to each of the following. Explain your reasoning. Whats the best explanation for the loc...
Cosmic Perspective Fundamentals
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Review. When a straight wire is warmed, its resistance is given by R = R0,[1 + a(T T0)] according to Equation 27.20, where a is the temperature coefficient of resistivity. This expression needs to be modified if we include the change in dimensions of the wire due to thermal expansion. For a copper wire of radius 0.100 0 mm and length 2.000 m, find its resistance at 100.0C, including the effects of both thermal expansion and temperature variation of resistivity. Assume the coefficients are known to four significant figures.arrow_forwardDraw two graphs of charge versus time on a capacitor. Draw one for charging an initially uncharged capacitor in series with a resistor, as in the circuit in Figure 21.38, starting from t = 0. Draw the other for discharging a capacitor through a resistor, as in the circuit in Figure 21.39, starting at t = 0, with an initial charge Q0. Show at least two intervals of t.arrow_forwardIntegrated Concepts A 12.0-V emf automobile battery has a terminal voltage of 16.0 V when being charged by a current of 10.0 A. (a) What is the battery’s internal resistance? (b) What power is dissipated inside the battery? (c) At what rate (in °C/min ) will its temperature increase if its mass is 20.0 kg and it has a specific heat of 0.300 kcal/kg. °C, assuming no heat escapes?arrow_forward
- Review. Ail aluminum rod has a resistance of 1.23 at 20.0C. Calculate the resistance of the rod at 120C by accounting for the changes in both the resistivity and the dimensions of the rod. The coefficient of linear expansion for aluminum is 2.40 10-6 (C)-1arrow_forwardFigure 21.55 shows how a bleeder resistor is used to discharge a capacitor after an electronic device is shut off allowing a person to work on the electronics with less risk of shock, (a) What is the time constant? (b) How long will it take to reduce the voltage on the capacitor to 0.250% (5% of 5%) of its full value once discharge begins? (c) If the capacitor is charged to a voltage V0through a 100-O resistance, calculate the time it takes to rise to 0.865V0(This is about two time constants.)arrow_forwardResidential building codes typically require the use of 12-gauge copper wire (diameter 0.205 cm) for wiring receptacles. Such circuits carry currents as large as 20.0 A. If a wire of smaller diameter (with a higher gauge number) carried that much current, the wire could rise to a high temperature and cause a fire. (a) Calculate the rate at which internal energy is produced in 1.00 m of 12-gauge copper wire carrying 20.0 A. (b) Repeat the calculation for a 12-gauge aluminum wire. (c) Explain whether a 12-gauge aluminum wire would be as safe as a copper wire.arrow_forward
- Item 15 Now we will consider some slightly different related scenarios to Example 21-18. Part A Example 21-18 depicts the following scenario. A circuit consists of a resistor R₁ = 126-, a resistor R₂ = 275-, a capacitor C = 182-μF, a switch, and an € = 3.00-V battery all connected in series. Initially the capacitor is uncharged and the switch is open. At time t=0 the switch is closed. increase decrease stay the same 3.00 V Suppose the resistance of the 126-2 resistor is reduced by a factor of 2. Assume everything else in the problem remains the same. Does the final value of the charge on the capacitor increase, decrease, or stay the same? Submit Request Answer ww 126 Ω 182 μF HH 275 Ω < 15 of 15 Reviewarrow_forward61. ssm Determine the equivalent resistance between the points A and B for the group of resistors in the drawing. ww 3.0 2 4.0 2 20.0 2; 9.0 23 8.0 2 6.0 2arrow_forward14 O In Fig. 27-32a, both batteries have emf & = 1.20 V and the external resistance R is a variable resistor. Figure 27-32b gives the electric potentials V between the terminals of each battery as func- tions of R: Curve 1 corresponds to battery 1, and curve 2 corre- sponds to battery 2. The horizontal scale is set by R, = 0.20 2. What is the internal resistance of (a) battery 1 and (b) battery 2? 0.5 -0.3 R (2) (a) (6) (A)Aarrow_forward
- Question 21arrow_forwardA flashlight bulb rated at 2.0 W and 3.0 V is operated by a 9.0-V battery. To light the bulb at its rated voltage and power, a resistor R is connected in series as shown in Fig. 19–85. What value should the resistor have? R FIGURE 19-85 Problem 87. 9.0 Varrow_forwardFigure 19–44 shows three identical bulbs in a circuit. What happens to the brightness of bulb A if you replace bulb B with a short circuit? A (a) Bulb A gets brighter. (b) Bulb A gets dimmer. (c) Bulb A's brightness does not change. (d) Bulb A goes out. C FIGURE 19-44 B MisConceptual Question 6. Varrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Ohm's law Explained; Author: ALL ABOUT ELECTRONICS;https://www.youtube.com/watch?v=PV8CMZZKrB4;License: Standard YouTube License, CC-BY