
Linear Algebra with Applications (2-Download)
5th Edition
ISBN: 9780321796974
Author: Otto Bretscher
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 2.1, Problem 58E
a.
To determine
To find that the how much each alloy went into the piece.
b.
To determine
To find the matrix A.
c.
To determine
To find the inverse of A.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Consider the table of values below.
x
y
2
64
3
48
4
36
5
27
Fill in the right side of the equation y= with an expression that makes each ordered pari (x,y) in the table a solution to the equation.
solving for x
Consider the table of values below.
x
y
2
63
3
70
4
77
5
84
Fill in the right side of the equation y= with an expression that makes each ordered pari (x,y) in the table a solution to the equation.
Chapter 2 Solutions
Linear Algebra with Applications (2-Download)
Ch. 2.1 - GOAL Use the concept of a linear transformation in...Ch. 2.1 - GOAL Use the concept of a linear transformation in...Ch. 2.1 - GOAL Use the concept of a linear transformation in...Ch. 2.1 - Find the matrix of the linear transformation...Ch. 2.1 - Consider the linear transformation T from 3 to 2...Ch. 2.1 - Consider the transformationT from 2 to 3 given by...Ch. 2.1 - Suppose v1,v2...,vm are arbitrary vectors in n...Ch. 2.1 - Find the inverse of the linear transformation...Ch. 2.1 - In Exercises 9 through 12, decide whether the...Ch. 2.1 - In Exercises 9 through 12, decide whether the...
Ch. 2.1 - In Exercises 9 through 12, decide whether the...Ch. 2.1 - In Exercises 9 through 12, decide whether the...Ch. 2.1 - Prove the following facts: a. The 22 matrix...Ch. 2.1 - a. For which values of the constantk is the matrix...Ch. 2.1 - For which values of the constants a and b is the...Ch. 2.1 - Give a geometric interpretation of the linear...Ch. 2.1 - Give a geometric interpretation of the linear...Ch. 2.1 - Give a geometric interpretation of the linear...Ch. 2.1 - Give a geometric interpretation of the linear...Ch. 2.1 - Give a geometric interpretation of the linear...Ch. 2.1 - Give a geometric interpretation of the linear...Ch. 2.1 - Give a geometric interpretation of the linear...Ch. 2.1 - Give a geometric interpretation of the linear...Ch. 2.1 - Consider the circular face in the accompanying...Ch. 2.1 - Consider the circular face in the accompanying...Ch. 2.1 - Consider the circular face in the accompanying...Ch. 2.1 - Consider the circular face in the accompanying...Ch. 2.1 - Consider the circular face in the accompanying...Ch. 2.1 - Consider the circular face in the accompanying...Ch. 2.1 - Consider the circular face in the accompanying...Ch. 2.1 - In Chapter 1, we mentioned that an old German...Ch. 2.1 - Find an nn matrix A such that Ax=3x , for all x in...Ch. 2.1 - Consider the transformation T from 2 to 2...Ch. 2.1 - Consider the transformation T from 2 to 2 that...Ch. 2.1 - In the example about the French coast guard in...Ch. 2.1 - Let T be a linear transformation from 2 to 2 . Let...Ch. 2.1 - Consider a linear transformation T from 2 to 2 ....Ch. 2.1 - The two column vectors v1 and v2 of a 22 matrix A...Ch. 2.1 - Show that if T is a linear transformation from m...Ch. 2.1 - Prob. 40ECh. 2.1 - Prob. 41ECh. 2.1 - When you represent a three-dimensional object...Ch. 2.1 - a. Consider the vector v=[234] . Is the...Ch. 2.1 - The cross product of two vectors in 3 is given by...Ch. 2.1 - Prob. 45ECh. 2.1 - Prob. 46ECh. 2.1 - Prob. 47ECh. 2.1 - Prob. 48ECh. 2.1 - Prove that if A is a transition matrix and x is a...Ch. 2.1 - Prob. 50ECh. 2.1 - Prob. 51ECh. 2.1 - Prob. 52ECh. 2.1 - Prob. 53ECh. 2.1 - Prob. 54ECh. 2.1 - Prob. 55ECh. 2.1 - For each of the, mini-Webs in Exercises 54 through...Ch. 2.1 - Some parking meters in downtown Geneva,...Ch. 2.1 - Prob. 58ECh. 2.1 - Prob. 59ECh. 2.1 - In the financial pages of a newspaper, one can...Ch. 2.1 - Prob. 61ECh. 2.1 - Prob. 62ECh. 2.1 - Prob. 63ECh. 2.1 - Prob. 64ECh. 2.2 - Sketch the image of the standard L under the...Ch. 2.2 - Find the matrix of a rotation through an angle of...Ch. 2.2 - Consider a linear transformation T from 2 to 3 ....Ch. 2.2 - Interpret the following linear transformation...Ch. 2.2 - The matrix [0.80.60.60.8] represents a rotation....Ch. 2.2 - Let L be the line in 3 that consists of all scalar...Ch. 2.2 - Let L be the line in 3 that consists of all scalar...Ch. 2.2 - Interpret the following linear transformation...Ch. 2.2 - Interpret the following linear transformation...Ch. 2.2 - Find the matrix of the orthogonal projection onto...Ch. 2.2 - Refer to Exercise 10. Find the matrix of the...Ch. 2.2 - Consider a reflection matrix A and a vector x in 2...Ch. 2.2 - Suppose a line L in 2 contains the Unit vector...Ch. 2.2 - Suppose a line L in 3 contains the unit vector...Ch. 2.2 - Suppose a line L in 3 contains the unit vector...Ch. 2.2 - Let T(x)=refL(x) be the reflection about the line...Ch. 2.2 - Consider a matrix A of the form A=[abba] , where...Ch. 2.2 - The linear transformation T(x)=[0.60.80.80.6]x is...Ch. 2.2 - Find the matrices of the linear transformations...Ch. 2.2 - Find the matrices of the linear transformations...Ch. 2.2 - Find the matrices of the linear transformations...Ch. 2.2 - Find the matrices of the linear transformations...Ch. 2.2 - Find the matrices of the linear transformations...Ch. 2.2 - Rotations and reflections have two remarkable...Ch. 2.2 - Find the inverse of the matrix [1k01] ,where k is...Ch. 2.2 - a. Find the scaling matrix A that transforms [21]...Ch. 2.2 - Prob. 27ECh. 2.2 - Prob. 28ECh. 2.2 - Prob. 29ECh. 2.2 - Find a nonzero 22 matrix A such that Ax is...Ch. 2.2 - Prob. 31ECh. 2.2 - Consider the rotation matrix D=[cossinsincos] and...Ch. 2.2 - Consider two nonparallel lines L1 and L2 in 2...Ch. 2.2 - One of the five given matrices represents an...Ch. 2.2 - Prob. 35ECh. 2.2 - Prob. 36ECh. 2.2 - Prob. 37ECh. 2.2 - The determinant of a matrix [abcd] is adbc (wehave...Ch. 2.2 - Describe each of the linear transformations...Ch. 2.2 - Prob. 40ECh. 2.2 - Prob. 41ECh. 2.2 - Prob. 42ECh. 2.2 - Prob. 43ECh. 2.2 - A nonzero matrix of the form A=[abba] represents a...Ch. 2.2 - Prob. 45ECh. 2.2 - A nonzero matrix of the form A=[abba] represents a...Ch. 2.2 - Prob. 47ECh. 2.2 - Prob. 48ECh. 2.2 - Prob. 49ECh. 2.2 - Prob. 50ECh. 2.2 - Prob. 51ECh. 2.2 - Prob. 52ECh. 2.2 - Sketch the image of the unit circle under the...Ch. 2.2 - Prob. 54ECh. 2.2 - Prob. 55ECh. 2.2 - Consider an invertible linear transformation T...Ch. 2.3 - If possible, compute the matrix products in...Ch. 2.3 - If possible, compute the matrix products in...Ch. 2.3 - If possible, compute the matrix products in...Ch. 2.3 - If possible, compute the matrix products in...Ch. 2.3 - If possible, compute the matrix products in...Ch. 2.3 - If possible, compute the matrix products in...Ch. 2.3 - If possible, compute the matrix products in...Ch. 2.3 - If possible, compute the matrix products in...Ch. 2.3 - If possible, compute the matrix products in...Ch. 2.3 - If possible, compute the matrix products in...Ch. 2.3 - If possible, compute the matrix products in...Ch. 2.3 - If possible, compute the matrix products in...Ch. 2.3 - If possible, compute the matrix products in...Ch. 2.3 - For the matrices A=[ 1 1 1 1],B=[ 1 2 3],C=[ 1 0 1...Ch. 2.3 - Prob. 15ECh. 2.3 - Prob. 16ECh. 2.3 - In the Exercises 17 through 26,find all matrices...Ch. 2.3 - In the Exercises 17 through 26, find all matrices...Ch. 2.3 - In the Exercises 17 through 26, find all matrices...Ch. 2.3 - In the Exercises 17 through 26, find all matrices...Ch. 2.3 - In the Exercises 17 through 26, find all matrices...Ch. 2.3 - In the Exercises 17 through 26, find all matrices...Ch. 2.3 - In the Exercises 17 through 26, find all matrices...Ch. 2.3 - In the Exercises 17 through 26, find all matrices...Ch. 2.3 - In the Exercises 17 through 26, find all matrices...Ch. 2.3 - In the Exercises 17 through 26, find all matrices...Ch. 2.3 - Prove the distributive laws for matrices:...Ch. 2.3 - Consider an np matrix A, a pm in matrix B, and...Ch. 2.3 - Consider the matrix D=[cossinsincos] . We know...Ch. 2.3 - Consider the lines P and Q in 2 in the...Ch. 2.3 - Consider two matrices A and B whose product ABis...Ch. 2.3 - Prob. 32ECh. 2.3 - For the matrices A in Exercises 33 through 42,...Ch. 2.3 - For the matrices A in Exercises 33 through 42,...Ch. 2.3 - For the matrices A in Exercises 33 through 42,...Ch. 2.3 - For the matrices A in Exercises 33 through 42,...Ch. 2.3 - For the matrices A in Exercises 33 through 42,...Ch. 2.3 - For the matrices A in Exercises 33 through 42,...Ch. 2.3 - For the matrices A in Exercises 33 through 42,...Ch. 2.3 - For the matrices A in Exercises 33 through 42,...Ch. 2.3 - For the matrices A in Exercises 33 through 42,...Ch. 2.3 - For the matrices A in Exercises 33 through 42,...Ch. 2.3 - In Exercises 43 through 48, find a 22matrix A with...Ch. 2.3 - In Exercises 43 through 48, find a 22matrix A with...Ch. 2.3 - In Exercises 43 through 48, find a 22matrix A with...Ch. 2.3 - In Exercises 43 through 48, find a 22matrix A with...Ch. 2.3 - In Exercises 43 through 48, find a 22matrix A with...Ch. 2.3 - In Exercises 43 through 48, find a 22matrix A with...Ch. 2.3 - In Exercises 49 through 54, consider the matrices...Ch. 2.3 - In Exercises 49 through 54, consider the matrices...Ch. 2.3 - In Exercises 49 through 54, consider the matrices...Ch. 2.3 - Prob. 52ECh. 2.3 - Prob. 53ECh. 2.3 - Prob. 54ECh. 2.3 - In Exercises 55 through 64,find all matrices X...Ch. 2.3 - In Exercises 55 through 64, find all matrices X...Ch. 2.3 - In Exercises 55 through 64, find all matrices X...Ch. 2.3 - In Exercises 55 through 64, find all matrices X...Ch. 2.3 - In Exercises 55 through 64, find all matrices X...Ch. 2.3 - In Exercises 55 through 64, find all matrices X...Ch. 2.3 - In Exercises 55 through 64, find all matrices X...Ch. 2.3 - In Exercises 55 through 64, find all matrices X...Ch. 2.3 - In Exercises 55 through 64, find all matrices X...Ch. 2.3 - In Exercises 55 through 64, find all matrices X...Ch. 2.3 - Find all upper triangular 22 matrices X such that...Ch. 2.3 - Find all lower triangular 33 matrices X such that...Ch. 2.3 - Prob. 67ECh. 2.3 - Prob. 68ECh. 2.3 - Consider the matrix A2 in Example 4 of Section...Ch. 2.3 - a. Compute A3 for the matrix A in Example 2.3.4....Ch. 2.3 - For the mini-Web in Example 2.3.4, find pages i...Ch. 2.3 - Prob. 72ECh. 2.3 - Prob. 73ECh. 2.3 - Prob. 74ECh. 2.3 - Prob. 75ECh. 2.3 - Prob. 76ECh. 2.3 - Prob. 77ECh. 2.3 - Prob. 78ECh. 2.3 - Prob. 79ECh. 2.3 - Prob. 80ECh. 2.3 - Prob. 81ECh. 2.3 - Prob. 82ECh. 2.3 - Prob. 83ECh. 2.3 - Prob. 84ECh. 2.3 - Prob. 85ECh. 2.4 - Decide whether the matrices in Exercises 1 through...Ch. 2.4 - Decide whether the matrices in Exercises 1 through...Ch. 2.4 - Decide whether the matrices in Exercises 1 through...Ch. 2.4 - Decide whether the matrices in Exercises 1 through...Ch. 2.4 - Decide whether the matrices in Exercises 1 through...Ch. 2.4 - Decide whether the matrices in Exercises 1 through...Ch. 2.4 - Decide whether the matrices in Exercises 1 through...Ch. 2.4 - Decide whether the matrices in Exercises 1 through...Ch. 2.4 - Decide whether the matrices in Exercises 1 through...Ch. 2.4 - Decide whether the matrices in Exercises 1 through...Ch. 2.4 - Decide whether the matrices in Exercises 1 through...Ch. 2.4 - Decide whether the matrices in Exercises 1 through...Ch. 2.4 - Decide whether the matrices in Exercises 1 through...Ch. 2.4 - Decide whether the matrices in Exercises 1 through...Ch. 2.4 - Decide whether the matrices in Exercises 1 through...Ch. 2.4 - Prob. 16ECh. 2.4 - Prob. 17ECh. 2.4 - Prob. 18ECh. 2.4 - Decide whether the linear transformations in...Ch. 2.4 - Decide whether the linear transformations in...Ch. 2.4 - Which of the functions f from to in Exercises 21...Ch. 2.4 - Which of the functions f from to in Exercises 21...Ch. 2.4 - Which of the functions f from to in Exercises 21...Ch. 2.4 - Which of the functions f from to in Exercises 21...Ch. 2.4 - Which of the (nonlinear) tranformtions from 2to...Ch. 2.4 - Which of the (nonlinear) tranformtions from 2to...Ch. 2.4 - Which of the (nonlinear) tranformtions from 2to...Ch. 2.4 - Find the inverse of the linear transformation...Ch. 2.4 - For which values of the constant k is the...Ch. 2.4 - For which values of the constants h and c is the...Ch. 2.4 - For which values of the constants a, b, and c is...Ch. 2.4 - Find all matrices [abcd] such that adbc=1 and A1=A...Ch. 2.4 - Consider the matrices of the form A=[abba] ,where...Ch. 2.4 - Consider the diagonal matrix A=[a000b000c] . a....Ch. 2.4 - Consider the upper triangular 33 matrix...Ch. 2.4 - To determine whether a square matrix A is...Ch. 2.4 - If A is an invertible matrix and c is a nonzero...Ch. 2.4 - Find A1 for A=[1k01] .Ch. 2.4 - Consider a square matrix that differs from the...Ch. 2.4 - Show that if a square matrix A has two equal...Ch. 2.4 - Which of the following linear transformations T...Ch. 2.4 - A square matrix is called a permutation matrix if...Ch. 2.4 - Consider two invertible nn matrices A and B. Is...Ch. 2.4 - Consider the nn matrix Mn , with n2 , that...Ch. 2.4 - To gauge the complexity of a computational task,...Ch. 2.4 - Consider the linear system Ax=b ,where A is an...Ch. 2.4 - Give an example of a noninvertible function f from...Ch. 2.4 - Consider an invertible linear transformation...Ch. 2.4 - Input-Output Analysis. (This exercise builds on...Ch. 2.4 - This exercise refers to exercise 49a. Consider the...Ch. 2.4 - Prob. 51ECh. 2.4 - Prob. 52ECh. 2.4 - Prob. 53ECh. 2.4 - Prob. 54ECh. 2.4 - Prob. 55ECh. 2.4 - Prob. 56ECh. 2.4 - Prob. 57ECh. 2.4 - Prob. 58ECh. 2.4 - Prob. 59ECh. 2.4 - Prob. 60ECh. 2.4 - Prob. 61ECh. 2.4 - In Exercises 55 through 65, show that the given...Ch. 2.4 - Prob. 63ECh. 2.4 - Prob. 64ECh. 2.4 - Prob. 65ECh. 2.4 - Prob. 66ECh. 2.4 - Prob. 67ECh. 2.4 - For two invertible nnmatrices A and B, determine...Ch. 2.4 - Prob. 69ECh. 2.4 - For two invertible nnmatrices A and B, determine...Ch. 2.4 - Prob. 71ECh. 2.4 - Prob. 72ECh. 2.4 - Prob. 73ECh. 2.4 - Prob. 74ECh. 2.4 - For two invertible nnmatrices A and B, determine...Ch. 2.4 - Find all linear transformations T from 2 to 2...Ch. 2.4 - Prob. 77ECh. 2.4 - Prob. 78ECh. 2.4 - Prob. 79ECh. 2.4 - Consider the regular tetrahedron sketched below,...Ch. 2.4 - Find the matrices of the transformations T and L...Ch. 2.4 - Consider the matrix E=[100310001] and an arbitrary...Ch. 2.4 - Are elementary matrices invertible? If so, is the...Ch. 2.4 - a. Justify the following: If A is an nm in matrix,...Ch. 2.4 - a. Justify the following: If A is an nm...Ch. 2.4 - a. Justify the following: Any invertible matrix is...Ch. 2.4 - Write all possible forms of elementary...Ch. 2.4 - Prob. 88ECh. 2.4 - Prob. 89ECh. 2.4 - Prob. 90ECh. 2.4 - Prob. 91ECh. 2.4 - Show that the matrix A=[0110] cannot be written...Ch. 2.4 - In this exercise we will examine which invertible...Ch. 2.4 - Prob. 94ECh. 2.4 - Prob. 95ECh. 2.4 - Prob. 96ECh. 2.4 - Prob. 97ECh. 2.4 - Prob. 98ECh. 2.4 - Prob. 99ECh. 2.4 - Prob. 100ECh. 2.4 - Prob. 101ECh. 2.4 - Prob. 102ECh. 2.4 - Prob. 103ECh. 2.4 - The color of light can be represented in a vector...Ch. 2.4 - Prob. 105ECh. 2.4 - Prob. 106ECh. 2.4 - Prob. 107ECh. 2.4 - Prob. 108ECh. 2 - The matrix [5665] represents a rotation...Ch. 2 - If A is any invertible nn matrix, then A...Ch. 2 - Prob. 3ECh. 2 - Matrix [1/21/21/21/2] represents a rotation.Ch. 2 - Prob. 5ECh. 2 - Prob. 6ECh. 2 - Prob. 7ECh. 2 - Prob. 8ECh. 2 - Prob. 9ECh. 2 - Prob. 10ECh. 2 - Matrix [k25k6] is invertible for all real numbers...Ch. 2 - There exists a real number k such that the matrix...Ch. 2 - Prob. 13ECh. 2 - Prob. 14ECh. 2 - Prob. 15ECh. 2 - Prob. 16ECh. 2 - Prob. 17ECh. 2 - Prob. 18ECh. 2 - Prob. 19ECh. 2 - Prob. 20ECh. 2 - Prob. 21ECh. 2 - Prob. 22ECh. 2 - Prob. 23ECh. 2 - There exists a matrix A such that [1212]A=[1111] .Ch. 2 - Prob. 25ECh. 2 - Prob. 26ECh. 2 - Prob. 27ECh. 2 - There exists a nonzero upper triangular 22 matrix...Ch. 2 - Prob. 29ECh. 2 - Prob. 30ECh. 2 - Prob. 31ECh. 2 - Prob. 32ECh. 2 - Prob. 33ECh. 2 - If A2 is invertible, then matrix A itself must be...Ch. 2 - Prob. 35ECh. 2 - Prob. 36ECh. 2 - Prob. 37ECh. 2 - Prob. 38ECh. 2 - Prob. 39ECh. 2 - Prob. 40ECh. 2 - Prob. 41ECh. 2 - Prob. 42ECh. 2 - Prob. 43ECh. 2 - Prob. 44ECh. 2 - Prob. 45ECh. 2 - Prob. 46ECh. 2 - Prob. 47ECh. 2 - Prob. 48ECh. 2 - Prob. 49ECh. 2 - Prob. 50ECh. 2 - Prob. 51ECh. 2 - Prob. 52ECh. 2 - Prob. 53ECh. 2 - Prob. 54ECh. 2 - Prob. 55ECh. 2 - Prob. 56ECh. 2 - Prob. 57ECh. 2 - Prob. 58ECh. 2 - Prob. 59ECh. 2 - Prob. 60ECh. 2 - Prob. 61ECh. 2 - For every transition matrix A there exists a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- There were 426 books sold in one week. The number of biology books sold was 5 times that of the number of psychology books. How many books each were sold?arrow_forwardPopulation decreases 5% each year. Starts with a starting population of 3705. Find that population after 5 years.arrow_forwardsolve using substitution -2x-3y=-15 -3x+9y=12arrow_forward
- Suppose that 7000 is placed in an accout that pays 4% interest. Interest compunds each year. Assume that no withdraws are made. How much would the account have after 1 year? And how much would the account have after 2 years?arrow_forwardUse substitution to solve the equations -2x+5y=18 x=2y-8arrow_forward5) For each function represented by an equation, make a table and plot the corresponding points to sketch the graph of the function. (a) y = 75 ()* 220 X y 200- -2 180 160 -1 140 0 120 100 1 60 80 2 3 4 x (b) y = 20 ()* 1 60 40 20 20 0 2 3 65- -1 X y 60 -2 55- 50 45 44 40 0 35- 30 1 25 2 20 20 15 3 10 5 LO 4 3-2 T -1 0 5- 4- -3- 2-arrow_forward
- A system of inequalities is shown. y 5 3 2 1 X -5 -4 -3 -2 -1 0 1 2 3 4 5 -1- Which system is represented in the graph? Oy>-x²-x+1 y 2x²+3 -2 -3 тarrow_forwardWhich set of systems of equations represents the solution to the graph? -5 -4 -3 -2 Of(x) = x² + 2x + 1 g(x) = x²+1 f(x) = x²+2x+1 g(x) = x²-1 f(x) = −x² + 2x + 1 g(x) = x²+1 f(x) = x² + 2x + 1 g(x) = x²-1 -1 5 y 4 3 2 1 0 -1- -2 -3- -4. -5 1 2 3 4 5arrow_forwardWhich of the graphs below correctly solves for x in the equation -x² - 3x-1=-x-4? о 10 8 (0,2) -10 -8 -6 -2 2 4 6 8 10 (-4,-2) -2 + (0,2) (4,6) -10-8-6-4-2 -2 2 4 6 8 10 (-3, -1) -2 2 (1-5) -6 -8 -10 10 -10-8-6-4-2 2 6 8 10 (2,0)arrow_forward
- 1) Express these large and small numbers from the Read and Study section in scientific notation: (a) 239,000 miles (b) 3,800,000,000,000 sheets of paper (c) 0.0000000000000000000000167 grams 2) Find all values for the variable x that make these equations true. (a) 5x = 1 (b) 3x = 1/1 9 (c) 4* = 11/ 4 (e) 4* = 64 (g) 10x = 1,000,000 (d) 3x=-3 (f) 2x = = 8 (h) 10x = 0.001arrow_forward(b) 4) Find an equation to fit each of the following graphs: (a) 20 20 18 16 14 12 10 8 6 4 2 24 22 20 18 16 14 12 10 8 16 A 2 -3 -2 -1-0 2 3 4. -1 0 1 2 3. -2 -2arrow_forward3) Which of the following are equivalent to 3? (There may be more than one that is equivalent!) -1 (a) (9)¯¹ 3. (b) (-3)-1 (c) (-3) -1 (d) -(¯3) (e) 11 3-1 (f) 3-4arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillElementary Geometry for College StudentsGeometryISBN:9781285195698Author:Daniel C. Alexander, Geralyn M. KoeberleinPublisher:Cengage Learning
- Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellMathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,

Elementary Geometry For College Students, 7e
Geometry
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Cengage,

Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill

Elementary Geometry for College Students
Geometry
ISBN:9781285195698
Author:Daniel C. Alexander, Geralyn M. Koeberlein
Publisher:Cengage Learning

Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell

Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
2.1 Introduction to inequalities; Author: Oli Notes;https://www.youtube.com/watch?v=D6erN5YTlXE;License: Standard YouTube License, CC-BY
GCSE Maths - What are Inequalities? (Inequalities Part 1) #56; Author: Cognito;https://www.youtube.com/watch?v=e_tY6X5PwWw;License: Standard YouTube License, CC-BY
Introduction to Inequalities | Inequality Symbols | Testing Solutions for Inequalities; Author: Scam Squad Math;https://www.youtube.com/watch?v=paZSN7sV1R8;License: Standard YouTube License, CC-BY