
EBK STUDENT SOLUTIONS MANUAL WITH STUDY
10th Edition
ISBN: 9781337520379
Author: Vuille
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 21, Problem 56P
A laser beam is used to levitate a metal disk against the force of Earth’s gravity. (a) Derive an equation giving the required intensity of light, I, in terms of the mass m of the disk, the gravitational acceleration g, the
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
A piece of copper originally 305mm long is pulled in tension
with a stress of 276MPa. If the deformation is elastic, what
will be the resultant elongation. E for copper is 110Gpa
Please solve and answer the problem correctly please. Be sure to give explanations on each step and write neatly please. Thank you!!
In the figures, the masses are hung from an elevator ceiling. Assume the velocity of the elevator is constant. Find the tensions in
the ropes (in N) for each case. Note that 0₁ = 35.0°, 0₂ = 55.0°, 03 = 60.0°, m₁ = 3.00 kg, and m2 = 7.00 kg. (Due to the
nature of this problem, do not use rounded intermediate values-including answers submitted in WebAssign-in your calculations.)
(a)
Τι
WY NY MY
T3
e₁
T₁
=
N
=
N
=
N
(b)
18
Τι
=
Τι
T3
=
|| || ||
=
T
T
Ts
m₂
N
N
N
02
T₂
T3
m₁
Chapter 21 Solutions
EBK STUDENT SOLUTIONS MANUAL WITH STUDY
Ch. 21.1 - Which of the following statements can be true for...Ch. 21.4 - For the circuit in Figure 21.8, is the...Ch. 21.4 - Prob. 21.3QQCh. 21.4 - Suppose XL XC in Figure 21.12. If switch A is...Ch. 21.4 - Suppose XL Xc in Figure 21.12. If switch A is...Ch. 21.4 - Prob. 21.6QQCh. 21.11 - In an apparatus such as the one in Figure 21.22....Ch. 21.12 - Which of the following statements are true about...Ch. 21 - An RLC circuit connected across an AC voltage...Ch. 21 - (a) Does the phase angle in an RLC series circuit...
Ch. 21 - Prob. 3CQCh. 21 - Receiving radio antennas can be in the form of...Ch. 21 - The following statements are related to an RLC...Ch. 21 - Prob. 6CQCh. 21 - In space sailing, which is a proposed alternative...Ch. 21 - Prob. 8CQCh. 21 - A resistor, capacitor, and inductor are connected...Ch. 21 - Prob. 10CQCh. 21 - Why should an infrared photograph of a person look...Ch. 21 - If a high-frequency current is passed through a...Ch. 21 - Prob. 13CQCh. 21 - Why is the sum of the maximum voltages across each...Ch. 21 - If the resistance in an RLC circuit remains the...Ch. 21 - An inductor and a resistor are connected in series...Ch. 21 - A capacitor and a resistor are connected in series...Ch. 21 - Prob. 18CQCh. 21 - Which of the following statements is true...Ch. 21 - (a) What is the resistance of a light bulb that...Ch. 21 - Prob. 2PCh. 21 - A 1.5-k resistor is connected to an AC voltage...Ch. 21 - Figure P21.4 show three lamp connected to a 120.-V...Ch. 21 - A 24.0-k resistor connected to an AC voltage...Ch. 21 - The output voltage of an AC generator is given by...Ch. 21 - (a) For what frequencies does a 22.0-F capacitor...Ch. 21 - North American outlets supply AC electricity with...Ch. 21 - When a 4.0-F capacitor is connected to a generator...Ch. 21 - An AC generator with an output rms voltage of 36.0...Ch. 21 - What maximum current is delivered by an AC source...Ch. 21 - A generator delivers an AC voltage of the form v =...Ch. 21 - Prob. 13PCh. 21 - An AC power source has an rms voltage of 120 V and...Ch. 21 - In a purely inductive AC circuit as shown in...Ch. 21 - The output voltage of an AC generator is given by...Ch. 21 - Prob. 17PCh. 21 - A sinusoidal voltage v = (80.0 V) sin (150t) is...Ch. 21 - A series RLC circuit has resistance R = 50.0 and...Ch. 21 - An inductor (L = 400. mH), a capacitor (C = 4.43...Ch. 21 - A resistor (R = 9.00 102 ), a capacitor (C =...Ch. 21 - A 50.0-H resistor, a 0.100-H inductor, and a...Ch. 21 - A series RLC circuit has resistance R = 12.0 ,...Ch. 21 - An AC source operating at 60. Hz with a maximum...Ch. 21 - A person is working near the secondary of a...Ch. 21 - A 60.0- resistor is connected in series with a...Ch. 21 - A series AC circuit contains a resistor, an...Ch. 21 - At what frequency does the inductive reactance of...Ch. 21 - An AC source with a maximum voltage of 150. V and...Ch. 21 - An AC source operating at 60. Hz with a maximum...Ch. 21 - A multimeter in an RL circuit records an rms...Ch. 21 - Prob. 32PCh. 21 - An RLC circuit has resistance R = 225 and...Ch. 21 - Prob. 34PCh. 21 - An inductor and a resistor are connected in...Ch. 21 - Consider a series RLC circuit with R = 25 , L =...Ch. 21 - An RLC circuit is used in a radio to tune into an...Ch. 21 - The resonant frequency of a certain series RLC...Ch. 21 - The AM bind extends from approximately 300. kHz to...Ch. 21 - Electrosurgical units (ESUs) supply high-frequency...Ch. 21 - Two electrical oscillators are used in a...Ch. 21 - A series circuit contains a 3.00-H inductor, a...Ch. 21 - The primary coil of a transformer has N1 = 250....Ch. 21 - A step-down transformer is used for recharging the...Ch. 21 - An AC power generator produces 50. A (rms) at 3...Ch. 21 - An ideal neon sign transformer provides 9 250 V at...Ch. 21 - Prob. 47PCh. 21 - A transmission line that has a resistance per unit...Ch. 21 - The U.S. Navy has long proposed the construction...Ch. 21 - (a) The distance to Polaris, the North Star, is...Ch. 21 - Prob. 51PCh. 21 - The speed of light in vacuum is defined to be...Ch. 21 - Oxygenated hemoglobin absorbs weakly in the red...Ch. 21 - Operation of the pulse oximeter (see previous...Ch. 21 - Prob. 55PCh. 21 - A laser beam is used to levitate a metal disk...Ch. 21 - Prob. 57PCh. 21 - Prob. 58PCh. 21 - Prob. 59PCh. 21 - A diathermy machine, used in physiotherapy,...Ch. 21 - What are the wavelength ranges in (a) the AM radio...Ch. 21 - An important news announcement is transmitted by...Ch. 21 - Prob. 63PCh. 21 - A spaceship is approaching a space station at a...Ch. 21 - Police radar guns measure the speed of moving...Ch. 21 - A speeder tries to explain to the police that the...Ch. 21 - A 25.0-mW laser beam of diameter 00 mm is...Ch. 21 - The intensity of solar radiation at the top of...Ch. 21 - Prob. 69APCh. 21 - In an RLC series circuit that includes a source of...Ch. 21 - As a way of determining the inductance of a coil...Ch. 21 - (a) What capacitance will resonate with a one-turn...Ch. 21 - A dish antenna with a diameter of 20.0 m receives...Ch. 21 - A particular inductor has appreciable resistance....Ch. 21 - Prob. 75APCh. 21 - Prob. 76AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- You are working with a movie director and investigating a scene with a cowboy sliding off a tree limb and falling onto the saddle of a moving horse. The distance of the fall is several meters, and the calculation shows a high probability of injury to the cowboy from the stunt. Let's look at a simpler situation. Suppose the director asks you to have the cowboy step off a platform 2.55 m off the ground and land on his feet on the ground. The cowboy keeps his legs straight as he falls, but then bends at the knees as soon as he touches the ground. This allows the center of mass of his body to move through a distance of 0.660 m before his body comes to rest. (Center of mass will be formally defined in Linear Momentum and Collisions.) You assume this motion to be under constant acceleration of the center of mass of his body. To assess the degree of danger to the cowboy in this stunt, you wish to calculate the average force upward on his body from the ground, as a multiple of the cowboy's…arrow_forwardA box of mass m = 2.00 kg is released from rest at the top of an inclined plane as seen in the figure. The box starts out at height h =0.200 m above the top of the table, the table height is H = 2.00 m, and 0 = 41.0°. H m (a) What is the acceleration (in m/s²) of the box while it slides down the incline? m/s² (b) What is the speed (in m/s) of the box when it leaves the incline? m/s (c) At what horizontal distance (in m) from the end of the table will the box hit the ground? m (d) How long (in s) from when the box is released does it hit the ground? S (e) Does the box's mass affect any of your above answers? Yes Noarrow_forward(a) A sphere made of rubber has a density of 0.940 g/cm³ and a radius of 7.00 cm. It falls through air of density 1.20 kg/m³ and has a drag coefficient of 0.500. What is its terminal speed (in m/s)? m/s (b) From what height (in m) would the sphere have to be dropped to reach this speed if it fell without air resistance? marrow_forward
- The systems shown below are in equilibrium. If the spring scales are calibrated in newtons, what do they read? Ignore the masses of the pulleys and strings and assume the pulleys and the incline are frictionless. (Let m = 2.19 kg and € = 29.0°.) scale in (a) N N scale in (b) scale in (c) N scale in (d) N a C m m m m m b d m Ꮎarrow_forwardAn elevator car has two equal masses attached to the ceiling as shown. (Assume m = 3.10 kg.) m m T₁ T2 (a) The elevator ascends with an acceleration of magnitude 2.00 m/s². What are the tensions in the two strings? (Enter your answers in N.) = N T₁ Τι = N (b) The maximum tension the strings can withstand is 78.8 N. What is the maximum acceleration of the elevator so that a string does not break? (Enter the magnitude in m/s².) m/s²arrow_forward(a) At what speed (in m/s) will a proton move in a circular path of the same radius as an electron that travels at 7.85 x 100 m/s perpendicular to the Earth's magnetic field at an altitude where the field strength is 1.20 x 10-5 T? 4.27e3 m/s (b) What would the radius (in m) of the path be if the proton had the same speed as the electron? 7.85e6 x m (c) What would the radius (in m) be if the proton had the same kinetic energy as the electron? 195.38 x m (d) What would the radius (in m) be if the proton had the same momentum as the electron? 3.7205 marrow_forward
- ! Required information The block shown is made of a magnesium alloy, for which E = 45 GPa and v = 0.35. Know that σx = -185 MPa. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. 25 mm B D 40 mm 100 mm Determine the magnitude of Oy for which the change in the height of the block will be zero. The magnitude of Oy is MPa.arrow_forwardThe rigid bar ABC is supported by two links, AD and BE, of uniform 37.5 × 6-mm rectangular cross section and made of a mild steel that is assumed to be elastoplastic with E = 200 GPa and σy= 250 MPa. The magnitude of the force Q applied at B is gradually increased from zero to 265 kN and a = 0.640 m. 1.7 m 1 m D A B 2.64 m E Determine the value of the normal stress in each link. The value of the normal stress in link AD is The value of the normal stress in link BE is 250 MPa. MPa.arrow_forwardTwo tempered-steel bars, each 16 in. thick, are bonded to a ½ -in. mild-steel bar. This composite bar is subjected as shown to a centric axial load of magnitude P. Both steels are elastoplastic with E= 29 × 106 psi and with yield strengths equal to 100 ksi and 50 ksi, respectively, for the tempered and mild steel. The load P is gradually increased from zero until the deformation of the bar reaches a maximum value dm = 0.04 in. and then decreased back to zero. Take L = 15 in. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. 2.0 in. in. 3 in. 3 16 in. Determine the maximum stress in the tempered-steel bars. The maximum stress in the tempered-steel bars is ksi.arrow_forward
- Ammonia enters the compressor of an industrial refrigeration plant at 2 bar, -10°C with a mass flow rate of 15 kg/min and is compressed to 12 bar, 140°C. Heat transfer from the compressor to its surroundings occurs at a rate of 6 kW. For steady-state operation, calculate, (a) the power input to the compressor, in kW, Answer (b) the entropy production rate, in kW/K, for a control volume encompassing the compressor and its immediate surroundings such that heat transfer occurs at 300 K.arrow_forwardNo chatgpt pls will upvotearrow_forwardShown to the right is a block of mass m=5.71kgm=5.71kg on a ramp that makes an angle θ=24.1∘θ=24.1∘ with the horizontal. This block is being pushed by a horizontal force, F=229NF=229N. The coefficient of kinetic friction between the two surfaces is μ=0.51μ=0.51. Enter an expression for the acceleration of the block up the ramp using variables from the problem statement together with gg for the acceleration due to gravity. a=arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning


Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What Are Electromagnetic Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=ftyxZBxBexI;License: Standard YouTube License, CC-BY