Theorem 2.1.1 Logical Equivalences Given any statement variables p, q, and r, a tautology t and a contradiction c, the following logical equivalences hold. 1. Commutative laws: P Vq = qVp (p V q) V r = p V (q V r) p V (q ^ r) = (p v q) ^ (p v r) P^q = q^p (p^q)^r=p ^ (q ^ r) рл (qvr) %3D(рлд)v(р^г) 2. Associative laws: 3. Distributive laws: 4. Identity laws: p^t=p V c = p p 5. Negation laws: PV ~p=t P^~p = c 6. Double negative law: ~(~p) = p 7. Idempotent laws: p V p = p P^p=p 8. Universal bound laws: Pvt=t рлс3Dс 9. De Morgan's laws: ~(p ^ q) = ~p V ~q p V (p ^ q) = P (p V q) = ~p^~q p^ (p v q) = p 10. Absorption laws: 11. Negations of t and c: ~t = c ~c = t (p v ~q) ^ (~p v~q) by (a) by (b) by (c) by (d) Therefore, (p V ~q) ^ (~p v ~q) = ~q. = (~qv p) ^ (~qv~p) ~qV (p ^~p) ɔ ^ b~
Theorem 2.1.1 Logical Equivalences Given any statement variables p, q, and r, a tautology t and a contradiction c, the following logical equivalences hold. 1. Commutative laws: P Vq = qVp (p V q) V r = p V (q V r) p V (q ^ r) = (p v q) ^ (p v r) P^q = q^p (p^q)^r=p ^ (q ^ r) рл (qvr) %3D(рлд)v(р^г) 2. Associative laws: 3. Distributive laws: 4. Identity laws: p^t=p V c = p p 5. Negation laws: PV ~p=t P^~p = c 6. Double negative law: ~(~p) = p 7. Idempotent laws: p V p = p P^p=p 8. Universal bound laws: Pvt=t рлс3Dс 9. De Morgan's laws: ~(p ^ q) = ~p V ~q p V (p ^ q) = P (p V q) = ~p^~q p^ (p v q) = p 10. Absorption laws: 11. Negations of t and c: ~t = c ~c = t (p v ~q) ^ (~p v~q) by (a) by (b) by (c) by (d) Therefore, (p V ~q) ^ (~p v ~q) = ~q. = (~qv p) ^ (~qv~p) ~qV (p ^~p) ɔ ^ b~
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Topic Video
Question
A logical equivalence is derived from Theorem 2.1.1. Supply a reason for each step.
![Theorem 2.1.1 Logical Equivalences
Given any statement variables p, q, and r, a tautology t and a contradiction c, the following logical equivalences
hold.
1. Commutative laws:
P Vq = qVp
(p V q) V r = p V (q V r)
p V (q ^ r) = (p v q) ^ (p v r)
P^q = q^p
(p^q)^r=p ^ (q ^ r)
рл (qvr) %3D(рлд)v(р^г)
2. Associative laws:
3. Distributive laws:
4. Identity laws:
p^t=p
V c = p
p
5. Negation laws:
PV ~p=t
P^~p = c
6. Double negative law:
~(~p) = p
7. Idempotent laws:
p V p = p
P^p=p
8. Universal bound laws:
Pvt=t
рлс3Dс
9. De Morgan's laws:
~(p ^ q) = ~p V ~q
p V (p ^ q) = P
(p V q) = ~p^~q
p^ (p v q) = p
10. Absorption laws:
11. Negations of t and c:
~t = c
~c = t](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fee8b475c-048b-404f-8041-55e6050e0ea3%2Fdb59436a-c4f9-4cbc-977c-0be69069a0ba%2F4guhwgh.jpeg&w=3840&q=75)
Transcribed Image Text:Theorem 2.1.1 Logical Equivalences
Given any statement variables p, q, and r, a tautology t and a contradiction c, the following logical equivalences
hold.
1. Commutative laws:
P Vq = qVp
(p V q) V r = p V (q V r)
p V (q ^ r) = (p v q) ^ (p v r)
P^q = q^p
(p^q)^r=p ^ (q ^ r)
рл (qvr) %3D(рлд)v(р^г)
2. Associative laws:
3. Distributive laws:
4. Identity laws:
p^t=p
V c = p
p
5. Negation laws:
PV ~p=t
P^~p = c
6. Double negative law:
~(~p) = p
7. Idempotent laws:
p V p = p
P^p=p
8. Universal bound laws:
Pvt=t
рлс3Dс
9. De Morgan's laws:
~(p ^ q) = ~p V ~q
p V (p ^ q) = P
(p V q) = ~p^~q
p^ (p v q) = p
10. Absorption laws:
11. Negations of t and c:
~t = c
~c = t
![(p v ~q) ^ (~p v~q)
by (a)
by (b)
by (c)
by (d)
Therefore, (p V ~q) ^ (~p v ~q) = ~q.
= (~qv p) ^ (~qv~p)
~qV (p ^~p)
ɔ ^ b~](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fee8b475c-048b-404f-8041-55e6050e0ea3%2Fdb59436a-c4f9-4cbc-977c-0be69069a0ba%2Fkx0zhn.jpeg&w=3840&q=75)
Transcribed Image Text:(p v ~q) ^ (~p v~q)
by (a)
by (b)
by (c)
by (d)
Therefore, (p V ~q) ^ (~p v ~q) = ~q.
= (~qv p) ^ (~qv~p)
~qV (p ^~p)
ɔ ^ b~
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)