21ST CENT.ASTRONOMY(LL)W/CODE WKBK PKG.
6th Edition
ISBN: 9780393874921
Author: PALEN
Publisher: Norton, W. W. & Company, Inc.
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 21, Problem 38QP
To determine
The amount of red shift, and the compare the size of the universe when a quasar emit light.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
If a galaxy is 9.0 Mpc away from Earth and recedes at 488 km/s, what is H0 (in km/s/Mpc)?
km/s/Mpc
What is the Hubble time (in yr)?
years
How old (in yr) would the universe be, assuming space-time is flat and the expansion of the universe has not been accelerating?
How would acceleration change your answer?
A.If the expansion of the Universe has been accelerating, the Universe could be substantially younger than the value entered above.
BIf the expansion of the Universe has been accelerating, the Universe could be substantially older than the value entered above.
If a galaxy is 8.9 Mpc away from Earth and recedes at 497 km/s, what is H. (in km/s/Mpc)?
km/s/Mрс
What is the Hubble time (in yr)?
years
How old (in yr) would the universe be, assuming space-time is flat and the expansion of the universe has not been accelerating?
years
How would acceleration change your answer?
If the expansion of the Universe has been accelerating, the Universe could be substantially younger than the value entered above.
If the expansion of the Universe has been accelerating, the Universe could be substantially older than the value entered above.
How old is the wild the universe be, assuming space-time IS FLAT and the expansion of the universe has NOT been accelerating?
Chapter 21 Solutions
21ST CENT.ASTRONOMY(LL)W/CODE WKBK PKG.
Ch. 21.1 - Prob. 21.1CYUCh. 21.2 - Prob. 21.2CYUCh. 21.3 - Prob. 21.3ACYUCh. 21.3 - Prob. 21.3BCYUCh. 21.4 - Prob. 21.4CYUCh. 21 - Prob. 1QPCh. 21 - Prob. 2QPCh. 21 - Prob. 3QPCh. 21 - Prob. 4QPCh. 21 - Prob. 5QP
Ch. 21 - Prob. 6QPCh. 21 - Prob. 7QPCh. 21 - Prob. 8QPCh. 21 - Prob. 9QPCh. 21 - Prob. 10QPCh. 21 - Prob. 11QPCh. 21 - Prob. 12QPCh. 21 - Prob. 13QPCh. 21 - Prob. 14QPCh. 21 - Prob. 15QPCh. 21 - Prob. 16QPCh. 21 - Prob. 17QPCh. 21 - Prob. 18QPCh. 21 - Prob. 19QPCh. 21 - Prob. 20QPCh. 21 - Prob. 21QPCh. 21 - Prob. 23QPCh. 21 - Prob. 24QPCh. 21 - Prob. 25QPCh. 21 - Prob. 26QPCh. 21 - Prob. 27QPCh. 21 - Prob. 28QPCh. 21 - Prob. 29QPCh. 21 - Prob. 30QPCh. 21 - Prob. 31QPCh. 21 - Prob. 32QPCh. 21 - Prob. 33QPCh. 21 - Prob. 34QPCh. 21 - Prob. 35QPCh. 21 - Prob. 36QPCh. 21 - Prob. 37QPCh. 21 - Prob. 38QPCh. 21 - Prob. 39QPCh. 21 - Prob. 40QPCh. 21 - Prob. 41QPCh. 21 - Prob. 42QPCh. 21 - Prob. 43QPCh. 21 - Prob. 44QPCh. 21 - Prob. 45QP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Explain what we mean when we call the universe homogeneous and isotropic. Would you say that the distribution of elephants on Earth is homogeneous and isotropic? Why?arrow_forwardWhy cant an open universe have a center? How can a closed universe not have a center?arrow_forwardAn astronomer observed the motions of some galaxies. Based on his observations, he made the following statements. Which one of them is most likely to be false? Take Hubble's constant to be 67 km/s/Mpc. A. A galaxy observed to be moving away from us at a speed of 70 km/s is at a distance of about 1 Mpc from us. B. A galaxy observed to be moving away from us at a speed of 700 km/s is at a distance of about 10 Mpc from us. C. A galaxy observed to be moving away from us at a speed of 7000 km/s is at a distance of about 100 Mpc from us. D. A galaxy observed to be moving away from us at a speed of 70000 km/s is at a distance of about 1 Gpc from us. Is the answer D? Thank you!arrow_forward
- Using our example from the previous unit, let's try to determine the Hubble time for this example universe. You were given that a good representative galaxy receded at a speed of 4000 km/s and was found to be 20 Mpc away. With that in mind, what would the age of that universe be in years (aka what is that universe's Hubble time)? Go ahead and take the number of kilometers per Mpc to be approximately 3.1*10^19 km/Mpc. While this problem may look scary at first, this is really just bringing you full circle to one of the unit conversion problems you encountered at the beginning of this course.arrow_forwardIf a galaxy is 9.0 Mpc away from Earth and recedes at 488 km/s, what is H, (in km/s/Mpc)? | km/s/Mpc What is the Hubble time (in yr)? | years How old (in yr) would the universe be, assuming space-time is flat and the expansion of the universe has not been accelerating? years How would acceleration change your answer? O If the expansion of the Universe has been accelerating, the Universe could be substantially younger than the value entered above. O If the expansion of the Universe has been accelerating, the Universe could be substantially older than the value entered above. Need Help? Read Itarrow_forwardIf a galaxy is 8.8 Mpc away from Earth and recedes at 498 km/s, what is H0 (in km/s/Mpc)? _______ km/s/Mpc What is the Hubble time (in yr)? _______ yr How would acceleration change your answer? A: If the expansion of the Universe has been accelerating, the Universe could be substantially younger than the value entered above. B: If the expansion of the Universe has been accelerating, the Universe could be substantially older than the value entered above.arrow_forward
- If a galaxy is 9.0 Mpc away from Earth and recedes at 510 km/s, what is H? What is the Hubble time?arrow_forwardDoes Hubble's Law work well for galaxies in the Local Group (such as Andromeda)? No, because dark energy is accelerating the universe's expansion over those distances. No, because we do not know the precise value of Ho. No, because Hubble did not know the Local Group existed when he discovered his law. Yes, it works well for all galaxies. No, because galaxies in the Local Group are bound gravitationally together.arrow_forwardE2arrow_forward
- The figure below is based on an assumed Hubble constant of 70 km/s/Mpc. How would you change the diagram to fit a Hubble constant of 50 km/s/Mpc? If the evolution of the universe were determined only by gravity, then its fate would be linked to its geometry. Open Negligible normal matter Flat Closed 14 9.5 Past Future Time Billion years ago Now The slope of the "negligible normal matter" line would be ---Select--- C and cross the time axis ---Select--- O than 14 billion years ago. The curved line separating the open and closed universe regions would cross the time axis O than 9.5 billion years ago. ---Select--- Scale of the universe, R © Cengage Learning 2013arrow_forwardA Type la supernova explodes in a galaxy at a distance of 6.10×107 light-years from Earth. If astronomers detect the light from the supernova today, how many years T have passed since the supernova exploded? T= 2.07 x10 -5 years Given a Hubble constant of 74.3 km/s/Mpc, at what speed v is this galaxy moving away from Earth? v= km/s What is this galaxy's redshift? redshift:arrow_forwardLooking for km/s/Mpc: Years: Years:arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning