21ST CENT.ASTRONOMY(LL)W/CODE WKBK PKG.
6th Edition
ISBN: 9780393874921
Author: PALEN
Publisher: Norton, W. W. & Company, Inc.
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 21, Problem 25QP
To determine
Explain the reason why the relationship between recession velocity and redshift fails for distant galaxies.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A galaxy with a spherically symmetric distribution of matter has a mass density profile of the type p(r) ∞ 1/r, where r is the radial coordinate from the centre
of the galaxy. To what type of circular velocity (r) does this correspond?
Select one:
a. (r)
O b.
c.
O d.
(r) ~ r
(r) ~ √r
(r): = constant
An observational survey of distant galaxies is undertaken that involves measuring their
distances using cepheid variables and red-shifts using spectroscopy. Explain how cepheid
variables can be used to measure the distances to galaxies.
A spectral line is observed whose wavelength in the laboratory is de
length of this spectral line observed in each galaxy, Xo, is listed in the table, along with
the distance, d, to the galaxy. Determine the red-shift and the recession velocity of each
galaxy and tabulate your results by making a copy of the table and filling in the blank spaces.
Sketch a Hubble diagram using your results and determine the value of the Hubble constant
Ho in units of km s-1 Mpc.
650 nm. The wave-
Galaxy 1
652.69
Galaxy 2 Galaxy 3 Galaxy 4 Galaxy 5
653.01
do (nm)
d (Mpc)
658.54
662.18
681.63
17
19
54
77
200
v (km s-1)
why are the shells visible around some elliptical galaxies significant?
Chapter 21 Solutions
21ST CENT.ASTRONOMY(LL)W/CODE WKBK PKG.
Ch. 21.1 - Prob. 21.1CYUCh. 21.2 - Prob. 21.2CYUCh. 21.3 - Prob. 21.3ACYUCh. 21.3 - Prob. 21.3BCYUCh. 21.4 - Prob. 21.4CYUCh. 21 - Prob. 1QPCh. 21 - Prob. 2QPCh. 21 - Prob. 3QPCh. 21 - Prob. 4QPCh. 21 - Prob. 5QP
Ch. 21 - Prob. 6QPCh. 21 - Prob. 7QPCh. 21 - Prob. 8QPCh. 21 - Prob. 9QPCh. 21 - Prob. 10QPCh. 21 - Prob. 11QPCh. 21 - Prob. 12QPCh. 21 - Prob. 13QPCh. 21 - Prob. 14QPCh. 21 - Prob. 15QPCh. 21 - Prob. 16QPCh. 21 - Prob. 17QPCh. 21 - Prob. 18QPCh. 21 - Prob. 19QPCh. 21 - Prob. 20QPCh. 21 - Prob. 21QPCh. 21 - Prob. 23QPCh. 21 - Prob. 24QPCh. 21 - Prob. 25QPCh. 21 - Prob. 26QPCh. 21 - Prob. 27QPCh. 21 - Prob. 28QPCh. 21 - Prob. 29QPCh. 21 - Prob. 30QPCh. 21 - Prob. 31QPCh. 21 - Prob. 32QPCh. 21 - Prob. 33QPCh. 21 - Prob. 34QPCh. 21 - Prob. 35QPCh. 21 - Prob. 36QPCh. 21 - Prob. 37QPCh. 21 - Prob. 38QPCh. 21 - Prob. 39QPCh. 21 - Prob. 40QPCh. 21 - Prob. 41QPCh. 21 - Prob. 42QPCh. 21 - Prob. 43QPCh. 21 - Prob. 44QPCh. 21 - Prob. 45QP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) Estimate the height (z) above or below the Galactic plane for the globular cluster M13 (1,b = 59°, 40.9°) and the Orion Nebula (1,b = 209°, -19.4°). M13 and the Orion Nebula are 7 kpc and 450 pc away from Earth respectively. (b) To which components of the Galaxy do these objects probably belong? Explain your answers.arrow_forwardPretend that galaxies are spaced evenly, 8.0 Mpc apart, and the average mass of a galaxy is 1.0 ✕ 1011 M. What is the average density (in kg/m3) of matter in the universe? Which model universe does this density value support?arrow_forwardPretend that galaxies are spaced evenly, 4.0 Mpc apart, and the average mass of a galaxy is 1.0 x 101 M What is the average density (in kg/m³) of matter in the universe? (Note: The volume of a sphere is 4 -ar, and the mass of the sun is 2.0 x 1030 kg.) kg/m3 Which model universe does this density value support? flat open closedarrow_forward
- It can be shown that if an object orbiting a star of mass M in a circular orbit of radius R has speed v, then Rv? M Suppose a star orbits the center of the galaxy it is contained in with an orbit that is nearly circular with radius 18 R = 2.5 x 10 and velocity v = 230 km/s. Use the result above to estimate the mass of the portion of the galaxy inside the star's orbit (place all of this mass at the center of the orbit). Mass =arrow_forwardA Type la supernova explodes in a galaxy at a distance of 6.10×107 light-years from Earth. If astronomers detect the light from the supernova today, how many years T have passed since the supernova exploded? T= 2.07 x10 -5 years Given a Hubble constant of 74.3 km/s/Mpc, at what speed v is this galaxy moving away from Earth? v= km/s What is this galaxy's redshift? redshift:arrow_forwardPretend that galaxies are spaced evenly, 7.0 Mpc apart, and the average mass of a galaxy is 1.0 ✕ 1011 M. What is the average density (in kg/m3) of matter in the universe? (Note: The volume of a sphere is 4/3pieR^3 and the mass of the sun is 2.0 ✕ 1030 kg.) ______ kg/m^3 Which model universe does this density value support? A: open B: flat C: closedarrow_forward
- The surface brightness profiles of elliptical galaxies follow the Sersic formula with n = 4. How much fainter is the elliptical galaxy at a radius of r compared r0 (the radius at which the brightness falls off by a factor of e), or in other words, what is the ratio of I(r)/I0. Values: r = 14 r0arrow_forwardSuppose you have obtained spectra of several galaxies and have measuerd the observed wavelength of the H-Alpha line (rest wavelength = 656.3 nm) to be Galaxy 1: 658.1 nm. Galaxy 2: 667.1 nm. Galaxy 3: 677.6 nm. Calculate the redshift, z, for each galaxy.arrow_forwardfor 14 i observed the galaxy end aroung 5 kpc. I need help with 18arrow_forward
- An 800 nm spectral line when observed from a galaxy is shifted to 920 nm. Calculate the redshift.arrow_forwardThe Hubble Law, equation (D), can be used to determine the age of the universe. Using your average valueof H, calculate the recessional velocity of a galaxy of a galaxy which is 800 Mpc away.Velocity of a galaxy 800 Mpc away: _______________________________km/secarrow_forwardDistribution of Dark matter The most mass of our Milky Way is contained in an inner region close to the core with radius R0.Because the mass outside this inner region is almost constant, the density distribution can bewritten as following (assume a flat Milky Way with height z0):ρ(r) = (ρ0, r ≤ R00, r > R0(a) Derive an expression for the mass M(r) enclosed within the radius r.(b) Derive the expected rotational velocity of the Milky Way v(r) at a radius r.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning