Essential University Physics
4th Edition
ISBN: 9780134988566
Author: Wolfson, Richard
Publisher: Pearson Education,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 21, Problem 33E
A net charge of 5.0 μC is applied on one side of a solid metal sphere 2.0 cm in diameter. Once electrostatic equilibrium is reached, and assuming no other conductors or charges nearby, what are (a) the volume charge density inside the sphere and (b) the surface charge density on the sphere?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An infinitely long cylindrical conducting shell of outer radius r1 = 0.10 m and inner radius r2 = 0.08 m initially carries a surface charge density σ = -0.15 μC/m2. A thin wire, with linear charge density λ = 1.1 μC/m, is inserted along the shells' axis. The shell and the wire do not touch and there is no charge exchanged between them.
A) What is the new surface charge density, in microcoulombs per square meter, on the inner surface of the cylindrical shell?
B) What is the new surface charge density, in microcoulombs per square meter, on the outer surface of the cylindrical shell?
C) Enter an expression for the magnitude of the electric field outside the cylinder (r > 0.1 m), in terms of λ, σ, r1, r, and ε0.
Please fast.
An infinitely long cylindrical conducting shell of outer radius r1 = 0.10 m and inner radius r2 = 0.08 m initially carries a surface charge density σ = -0.45 μC/m2. A thin wire, with linear charge density λ = 1.2 μC/m, is inserted along the shells' axis. The shell and the wire do not touch and there is no charge exchanged between them.
What is the new surface charge density, in microcoulombs per square meter, on the inner surface of the cylindrical shell? What is the new surface charge density, in microcoulombs per square meter, on the outer surface of the cylindrical shell?
Enter an expression for the magnitude of the electric field outside the cylinder (r > 0.1 m), in terms of λ, σ, r1, r, and ε0.
Chapter 21 Solutions
Essential University Physics
Ch. 21.1 - Which figure represents the electric field of a...Ch. 21.2 - The figure shows a cube of side s in a uniform...Ch. 21.3 - A spherical surface surrounds an isolated positive...Ch. 21.4 - A spherical shell carries charge Q distributed...Ch. 21.5 - (1) If you're close to a finite line of charge...Ch. 21.6 - (1) If you're close to a finite line of charge...Ch. 21 - Can electric field lines ever cross? Why or why...Ch. 21 - The electric flux through a closed surface is...Ch. 21 - Under what conditions can the electric flux...Ch. 21 - Right field lines emerge from a closed surface...
Ch. 21 - In Gausss law, EdA=q0does the field E necessarily...Ch. 21 - The field of an infinite charged line decreases as...Ch. 21 - Why cant you use Gausss law to determine the field...Ch. 21 - Youre sitting inside an uncharged, hollow...Ch. 21 - Does Gausss law apply to a spherical Gaussian...Ch. 21 - The electric field of a flat sheet of charge is...Ch. 21 - In Fig. 21.32, the magnitude of the middle charge...Ch. 21 - Charges +2q and q are near each other. Sketch some...Ch. 21 - The net charge shown in Fig. 21.33 is +Q. Identify...Ch. 21 - A flat surface with area 2.0 m2 is in a uniform...Ch. 21 - The electric field on the surface of a...Ch. 21 - In the figure with GOT IT? 21.2, take E = 1.75...Ch. 21 - In Fig. 21.8, take the half-cylinders radius and...Ch. 21 - A sock comes out of the dryer with a trillion...Ch. 21 - Whats the electric flux through the closed...Ch. 21 - Interpret This problem involves applying Gauss's...Ch. 21 - A 2.6-C charge is at the center of a cube 7.5 cm...Ch. 21 - The electric field at the surface of a...Ch. 21 - A solid sphere 25 cm in radius carries 14C,...Ch. 21 - A 15-nC point charge is at the center of a thin...Ch. 21 - The electric field strength outside a charge...Ch. 21 - An electron close to a large, Hat sheet of charge...Ch. 21 - Find the field produced by a uniformly charged...Ch. 21 - What surface charge density on an infinite sheet...Ch. 21 - A rod 50 cm long and 1.0 cm in radius carries a...Ch. 21 - Whats the approximate field strength 1 cm above a...Ch. 21 - The disk in Fig. 21.22 has area 0.14 m2 and is...Ch. 21 - What is the electric field strength just outside...Ch. 21 - A net charge of 5.0 C is applied on one side of a...Ch. 21 - A positive point charge q lies at the center of a...Ch. 21 - A total charge of 18 C is applied to a thin,...Ch. 21 - Example 21.2: A positive point charge +q is at the...Ch. 21 - Example 21.2: A point charge q is at the center of...Ch. 21 - Example 21.2: A long, thin wire carrying uniform...Ch. 21 - Example 21.2: A long, thin wire canning uniform...Ch. 21 - Example 21.4: A long, straight wire carries a...Ch. 21 - Example 21.4: A long, thin rod carries charge...Ch. 21 - Example 21.4: An infinitely long rod carries a...Ch. 21 - Example 21.4: A 75.0-cm-long rod of diameter 2.54...Ch. 21 - Whats the flux through the hemispherical open...Ch. 21 - An electric field is given byE=E0(y/a)k, where E0...Ch. 21 - The electric field in a certain region is given by...Ch. 21 - A study shows that mammalian red blood cells...Ch. 21 - Positive charge is spread uniformly over the...Ch. 21 - A solid sphere 2.0 cm in radius carries a uniform...Ch. 21 - A point charge of 2Q is at the center of a...Ch. 21 - Prob. 51PCh. 21 - A spherical shell of radius R and negligible...Ch. 21 - A spherical shell 30 cm in diameter carries 85 C...Ch. 21 - A thick, spherical shell of inner radius a and...Ch. 21 - A long, thin wire carrying 5.6 nC/m runs down the...Ch. 21 - A long, solid rod of radius R carries a uniform...Ch. 21 - A solid rod 2.54 cm in diameter and 1.50 m long...Ch. 21 - If you painted positive charge on the floor, what...Ch. 21 - A charged slab extends infinitely in two...Ch. 21 - A solid sphere 10 cm in radius carries a 40-C...Ch. 21 - A nonconducting square plate 75 cm on a side...Ch. 21 - A 250-nC point charge is placed at the center of...Ch. 21 - An irregular conductor containing an irregular,...Ch. 21 - You measure the electric field strength at points...Ch. 21 - A point charge q is at the center of a spherical...Ch. 21 - A point charge q is at the center of a spherical...Ch. 21 - The volume charge density inside a solid sphere of...Ch. 21 - Figure 21.37 shows a rectangular box with sides 2a...Ch. 21 - The charge density within a charged sphere of...Ch. 21 - Calculate the electric fields in Example 21.2...Ch. 21 - A solid sphere of radius R carries a nonuniform...Ch. 21 - Problem 76 of Chapter 13 explored what happened to...Ch. 21 - An infinitely long solid cylinder of radius R...Ch. 21 - A solid sphere of radius R carries a uniform...Ch. 21 - Repeal Problem 59 for the case where the charge...Ch. 21 - Coaxial cables are widely used with audio-visual...Ch. 21 - A coaxial cable carries equal but opposite charges...Ch. 21 - How does the electric field between the conductors...Ch. 21 - Coaxial cables are widely used with audio-visual...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Foods packed in plastic for microwaving are a. dehydrated. b. freeze-dried. c. packaged aseptically. d. commerc...
Microbiology: An Introduction
Under what conditions would you expect microorganisms to grow as a result of denitrification?
Brock Biology of Microorganisms (15th Edition)
The bioremediation process shown in the photograph is used to remove benzene and other hydrocarbons from soil c...
Microbiology: An Introduction
Match each of the following items with all the terms it applies to:
Human Physiology: An Integrated Approach (8th Edition)
Why are BSL-4 suits pressurized? Why not just wear tough regular suits?
Microbiology with Diseases by Body System (5th Edition)
Explain why genetic Variation within a population is a prerequisite for evolution.
Campbell Biology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) A charge of −335e is uniformly distributed along a circular arc of radius 4.20 cm, which subtends an angle of 44°. What is the linear charge density along the arc? _______C/m(b) A charge of −335e is uniformly distributed over one face of a circular disk of radius 2.15 cm. What is the surface charge density over that face? _________C/m2(c) A charge of −335e is uniformly distributed over the surface of a sphere of radius 2.15 cm. What is the surface charge density over that surface?______ C/m2(d) A charge of −335e is uniformly spread through the volume of a sphere of radius 2.15 cm. What is the volume charge density in that sphere? _______C/m3 (please include units so that I can follow the steps easier)arrow_forwardA charge of uniform linear density 1.90 nC/m is distributed along a long, thin, nonconducting rod. The rod is coaxial with a long conducting cylindrical shell with an inner radius of 6.34 cm and an outer radius of 10.4 cm. If the net charge on the shell is zero, what is the surface charge density on the outer surface of the shell?arrow_forwardAn infinitely long cylindrical conducting shell of outer radius r1 = 0.10 m and inner radius r2 = 0.08 m initially carries a surface charge density σ = -0.45 μC/m2. A thin wire, with linear charge density λ = 1.1 μC/m, is inserted along the shells' axis. The shell and the wire do not touch and there is no charge exchanged between them. Part (A) What is the new surface charge density, in microcoulombs per square meter, on the inner surface of the cylindrical shell? Part (B) What is the new surface charge density, in microcoulombs per square meter, on the outer surface of the cylindrical shell? Part (C) Enter an expression for the magnitude of the electric field outside the cylinder (r > 0.1 m), in terms of λ, σ, r1, r, and ε0.arrow_forward
- A charge of uniform linear density 1.64 nC/m is distributed along a long, thin, nonconducting rod. The rod is coaxial with a long conducting cylindrical shell with an inner radius of 8.18 cm and an outer radius of 15.4 cm. What is the surface charge density on the inner surface of the shell?arrow_forwardIn part (a) of the figure an electron is shot directly away from a uniformly charged plastic sheet, at speed vs = 3.60 x 105 m/s. The sheet is nonconducting, flat, and very large. Part (b) of the figure gives the electron's vertical velocity component v versus time t until the return to the launch point. What is the sheet's surface charge density? Assume ts = 28.0 ps. (a) v (105 m/s) t (ps) (b)arrow_forwardIn part (a) of the figure an electron is shot directly away from a uniformly charged plastic sheet, at speed vs = 3.40 × 105 m/s. The sheet is nonconducting, flat, and very large. Part (b) of the figure gives the electron's vertical velocity component v versus time t until the return to the launch point. What is the sheet's surface charge density?Assume ts = 26.0 ps.arrow_forward
- In part (a) of the figure an electron is shot directly away froma uniformly charged plastic sheet, at speed v, = 3.40 x 105 m/s. The sheet is nonconducting, flat, and very large. Part (b) of the figure gives the electron's vertical velocity component v versus time t until the return to the launch point. What is the sheet's surface charge density? Assume t, = 22.0 ps. t (ps) (a) (b) Number i Units v (10° m/s)arrow_forwardIn part (a) of the figure an electron is shot directly away from a uniformly charged plastic sheet, at speed vs = 2.20 x 105 m/s. The sheet is nonconducting, flat, and very large. Part (b) of the figure gives the electron's vertical velocity component v versus time t until the return to the launch point. What is the sheet's surface charge density? Assume ts = 10.0 ps. Number 3.699E-6 + + - e + + + + + (a) Units C/m^2 v (105 m/s) -Vs t (ps) (b) tsarrow_forwardA 1 meter length of coaxial cable has an inner radius of 5 mm and an outer radius of 10 mm. The space between conductors is assumed to be filled with air. The total charge the inner conductor is 41 UC. Answer questions 10 and 11 on 10. The charge density on inner conductor is: CHAR a. 200m uc b. 400m u c. 200 μC 021-Sha A Mayjen 25°C X x 90E 9:35 AM 3/12001arrow_forward
- In part (a) of the figure an electron is shot directly away from a uniformly charged plastic sheet, at speed vs = 3.70 × 105 m/s. The sheet is nonconducting, flat, and very large. Part (b) of the figure gives the electron's vertical velocity component v versus time t until the return to the launch point. What is the sheet's surface charge density? Assume t₂ = 18.0 ps. (a) -e v (105 m/s) ° -V's t (ps) (b)arrow_forwardIn part (a) of the figure an electron is shot directly away from a uniformly charged plastic sheet, at speed vs = 2.80 × 105 m/s. The sheet is nonconducting, flat, and very large. Part (b) of the figure gives the electron's vertical velocity component v versus time t until the return to the launch point. What is the sheet's surface charge density? Assume t = 14.0 ps. -e = + + + + + + = (a) Number i Units v (105 m/s) 0 デ (b) t (ps) tsarrow_forwardCharge is placed on the surface of a 2.7-cm radius isolated conducting sphere. The surface charge density is uniform and has the value 6.9x10-6 C/m². The total charge on the sphere is: O 6.3x10-8 C O 4.7x10-8 C O 2.1x10-8 C O 5.6x10-8 Carrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY