
Concept explainers
(a)
Interpretation:
Electronic configuration of the following metals has to be written –
Concept Introduction:
Electronic configuration of an atom represents the arrangement of electrons in various energy levels. The electrons are arranged in increasing order of energy levels according to Aufbau principle. It is pictorially represented as –
Figure 1
The terms
(a)

Answer to Problem 23E
Electronic configuration of Ti -
Electronic configuration of Ti2+ -
Electronic configuration of Ti4+ -
Explanation of Solution
The above electronic configuration corresponds to that of Argon till
Ti2+ is formed when Titanium loses two electrons. Accordingly the electronic configuration of Ti2+ is –
The above electronic configuration corresponds to that of Argon till
Ti4+ is formed when Titanium loses four electrons. Accordingly the electronic configuration of Ti4+ is –
The above electronic configuration corresponds to that of Argon till
(b)
Interpretation:
Electronic configuration of the following metals has to be written –
Concept Introduction:
Electronic configuration of an atom represents the arrangement of electrons in various energy levels. The electrons are arranged in increasing order of energy levels according to Aufbau principle. It is pictorially represented as –
Figure 1
The terms
(b)

Answer to Problem 23E
Electronic configuration of Re -
Electronic configuration of Re2+ -
Electronic configuration of Re3+ -
Explanation of Solution
Atomic number of Rhenium is
The above electronic configuration corresponds to that of Xenon till
Re2+ is formed when Rhenium loses two electrons. Accordingly the electronic configuration of Re2+ is –
The above electronic configuration corresponds to that of Xenon till
Re3+ is formed when Rhenium loses three electrons. Accordingly the electronic configuration of Re2+ is –
The above electronic configuration corresponds to that of Xenon till
(c)
Interpretation:
Electronic configuration of the following metals has to be written –
Concept Introduction:
Electronic configuration of an atom represents the arrangement of electrons in various energy levels. The electrons are arranged in increasing order of energy levels according to Aufbau principle. It is pictorially represented as –
Figure 1
The terms
(c)

Answer to Problem 23E
Electronic configuration of Ir -
Electronic configuration of Ir2+ -
Electronic configuration of Ir3+ -
Explanation of Solution
Atomic number of Iridium is
The above electronic configuration corresponds to that of Xenon till
Ir2+ is formed when Iridium loses two electrons. Accordingly the electronic configuration of Ir2+ is –
The above electronic configuration corresponds to that of Xenon till
Ir3+ is formed when Iridium loses three electrons. Accordingly the electronic configuration of Ir3+ is –
The above electronic configuration corresponds to that of Xenon till
Want to see more full solutions like this?
Chapter 21 Solutions
Chemistry (AP Edition)
- Name these organic compounds: structure name CH3 CH3 ☐ F F CH3 ☐ O Explanation Check 2025 McGraw Hill LLC. All Rights Reserved. Terms ofarrow_forwardClassify each of the following molecules as aromatic, antiaromatic, or nonaromatic. ZI NH Explanation Check O aromatic O antiaromatic O nonaromatic O aromatic O antiaromatic H O nonaromatic O aromatic O antiaromatic O nonaromatic ×arrow_forwardPart I. Draw the stepwise reaction mechanism of each product (a, b, c, d, e, f) HO HO OH НОН,С HO OH Sucrose HO CH₂OH H N N HO -H H -OH KMnO4, Heat H OH CH₂OH (d) Phenyl Osatriazole OH НОН,С HO HO + Glacial HOAC HO- HO CH₂OH OH HO Fructose (a) Glucose OH (b) H₂N HN (c) CuSO4-5H2O, ethanol H N N N HO ·H H OH H OH N CH₂OH OH (f) Phenyl Osazone H (e) Carboxy phenyl osatriazole Figure 2.1. Reaction Scheme for the Total Synthesis of Fine Chemicalsarrow_forward
- Please see photoarrow_forward=Naming benzene derivatives Name these organic compounds: structure C1 CH3 name ☐ CH3 ப C1 × ☐arrow_forwardBlocking Group are use to put 2 large sterically repulsive group ortho. Show the correct sequence toconnect the reagent to product with the highest yield possible. * see image **NOTE: The compound on the left is the starting point, and the compound on the right is the final product. Please show the steps in between to get from start to final, please. These are not two different compounds that need to be worked.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





