Concept explainers
Expand Your knowledge: Decimal Data The fallowing data represent tonnes of wheat harvested each year (1894-1925) from Plot 19 at the Rothamsted Agricultural Experiment Stations, England.
2.71 | 1.62 | 2.60 | 1.64 | 2.20 | 2.02 | 1.67 | 1.99 | 2.34 | 1.26 | 1.31 |
1.80 | 2.82 | 2.15 | 2.07 | 1.62 | 1.47 | 2.19 | 0.59 | 1.48 | 0.77 | 1.04 |
1.32 | 0.89 | 1.35 | 0.95 | 0.94 | 1.39 | 1.19 | 1.18 | 0.46 | 0.70 |
(a) Multiply each data value by 100 to “clear" the decimals.
(b) Use the standard procedures of this section to make a frequency table and histogram with your whole-number data. Use six classes.
(c) Divide class limits, class boundaries, and class midpoints by 100 to get back to your original data values.
(a)
![Check Mark](/static/check-mark.png)
To find: The data that are multiply with 100 for each value in the data..
Answer to Problem 21P
Solution: The data multiply with 100 for each value in the data is as follows:
data | data*100 | data | data*100 | data | data*100 | data | data*100 |
2.71 | 271 | 2.34 | 234 | 1.47 | 147 | 1.35 | 135 |
1.62 | 162 | 1.26 | 126 | 2.19 | 219 | 0.95 | 95 |
2.6 | 260 | 1.31 | 131 | 0.59 | 59 | 0.94 | 94 |
1.64 | 164 | 1.8 | 180 | 1.48 | 148 | 1.39 | 139 |
2.2 | 220 | 2.82 | 282 | 0.77 | 77 | 1.19 | 119 |
2.02 | 202 | 2.15 | 215 | 2.04 | 204 | 1.18 | 118 |
1.67 | 167 | 2.07 | 207 | 1.32 | 132 | 0.46 | 46 |
1.99 | 199 | 1.62 | 162 | 0.89 | 89 | 0.7 | 70 |
Explanation of Solution
Calculation: The data represent the tons of wheat harvested each year and there are 32 values in the data set. To find the decimal data in to “clear” data that multiply with each value in the data by 100. The calculation is as follows:
Data | Data*100 | Data | Data*100 | Data | Data*100 | Data | Data*100 |
2.71 | 2.34 | 234 | 1.47 | 147 | 1.35 | 135 | |
1.62 | 1.26 | 126 | 2.19 | 219 | 0.95 | 95 | |
2.6 | 1.31 | 131 | 0.59 | 59 | 0.94 | 94 | |
1.64 | 164 | 1.8 | 180 | 1.48 | 148 | 1.39 | 139 |
2.2 | 220 | 2.82 | 282 | 0.77 | 77 | 1.19 | 119 |
2.02 | 202 | 2.15 | 215 | 2.04 | 204 | 1.18 | 118 |
1.67 | 167 | 2.07 | 207 | 1.32 | 132 | 0.46 | 46 |
1.99 | 199 | 1.62 | 162 | 0.89 | 89 | 0.7 | 70 |
Interpretation: Hence, the data multiplied with 100 is as follows:
Data | Data*100 | Data | Data*100 | Data | Data*100 | Data | Data*100 |
2.71 | 271 | 2.34 | 234 | 1.47 | 147 | 1.35 | 135 |
1.62 | 162 | 1.26 | 126 | 2.19 | 219 | 0.95 | 95 |
2.6 | 260 | 1.31 | 131 | 0.59 | 59 | 0.94 | 94 |
1.64 | 164 | 1.8 | 180 | 1.48 | 148 | 1.39 | 139 |
2.2 | 220 | 2.82 | 282 | 0.77 | 77 | 1.19 | 119 |
2.02 | 202 | 2.15 | 215 | 2.04 | 204 | 1.18 | 118 |
1.67 | 167 | 2.07 | 207 | 1.32 | 132 | 0.46 | 46 |
1.99 | 199 | 1.62 | 162 | 0.89 | 89 | 0.7 | 70 |
(b)
![Check Mark](/static/check-mark.png)
To find: The class width, class limits, class boundaries, midpoint, frequency, relative frequency, and cumulative frequency of the data..
Answer to Problem 21P
Solution: The complete frequency table is as follows:
class limits | class boundaries | midpoints | freq | relative freq | cumulative freq |
46-85 | 45.5-85.5 | 65.5 | 4 | 0.12 | 4 |
86-125 | 85.5-125.5 | 105.5 | 5 | 0.16 | 9 |
126-165 | 125.5-165.5 | 145.5 | 10 | 0.31 | 19 |
166-205 | 165.5-205.5 | 185.5 | 5 | 0.16 | 24 |
206-245 | 205.5-245.5 | 225.5 | 5 | 0.16 | 29 |
246-285 | 245.5-285.5 | 265.5 | 3 | 0.09 | 32 |
Explanation of Solution
Calculation: To find the class width for the whole data of 32 values, it is observed that largest value of the data set is 282 and the smallest value is 46 in the data. Using 6 classes, the class width calculated in the following way:
The value is round up to the nearest whole number. Hence, the class width of the data set is 40. The class width for the data is 40 and the lowest data value (46) will be the lower class limit of the first class. Because the class width is 40, it must add 40 to the lowest class limit in the first class to find the lowest class limit in the second class. There are 6 desired classes. Hence, the class limits are 46–85, 86–125, 126–165, 166–205, 206–245, and 246–285. Now, to find the class boundaries subtract 0.5 from lower limit of every class and add 0.5 to the upper limit of every class interval. Hence, the class boundaries are 45.5–85.5, 85.5–125.5, 125.5–165.5, 165.5–205.5, 205.5–245.5, and 245.5–285.5.
Next to find the midpoint of the class is calculated by using formula,
Midpoint of first class is calculated as:
The frequencies for respective classes are 4, 5, 10, 5, 5, and 3.
Relative frequency is calculated by using the formula
The frequency for 1st class is 4 and total frequencies are 32 so the relative frequency is
The calculated frequency table is as follows:
Class limits | Class boundaries | Midpoints | Freq | Relative freq | Cumulative freq |
46-85 | 45.5-85.5 | 65.5 | 4 | 0.12 | 4 |
86-125 | 85.5-125.5 | 105.5 | 5 | 0.16 | 9 |
126-165 | 125.5-165.5 | 145.5 | 10 | 0.31 | 19 |
166-205 | 165.5-205.5 | 185.5 | 5 | 0.16 | 24 |
206-245 | 205.5-245.5 | 225.5 | 5 | 0.16 | 29 |
246-285 | 245.5-285.5 | 265.5 | 3 | 0.09 | 32 |
Graph: To construct the histogram by using the MINITAB, the steps are as follows:
Step 1: Enter the class boundaries in C1 and frequency in C2.
Step 2: Go to Graph > Histogram > Simple.
Step 3: Enter C1 in Graph variable then go to Data options > Frequency > C2.
Step 4: Click on OK.
The obtained histogram is as follows:
Interpretation: Hence, the complete frequency table is as follows:
Class limits | Class boundaries | Midpoints | Freq | Relative freq | Cumulative freq |
46-85 | 45.5-85.5 | 65.5 | 4 | 0.12 | 4 |
86-125 | 85.5-125.5 | 105.5 | 5 | 0.16 | 9 |
126-165 | 125.5-165.5 | 145.5 | 10 | 0.31 | 19 |
166-205 | 165.5-205.5 | 185.5 | 5 | 0.16 | 24 |
206-245 | 205.5-245.5 | 225.5 | 5 | 0.16 | 29 |
246-285 | 245.5-285.5 | 265.5 | 3 | 0.09 | 32 |
(c)
![Check Mark](/static/check-mark.png)
To find: The class limits, class boundaries, and midpoints in the table by dividing 100..
Answer to Problem 21P
Solution: The frequency table of original data is as:
class limits | class boundaries | Midpoints |
0.46-0.85 | 0.455-0.855 | 0.655 |
0.86-1.25 | 0.855-1.255 | 1.055 |
1.26-1.65 | 1.255-1.655 | 1.455 |
1.66-2.05 | 1.655-2.055 | 1.855 |
2.06-2.45 | 2.055-2.455 | 2.255 |
2.46-2.85 | 2.455-2.855 | 2.655 |
Explanation of Solution
Calculation: The frequency table for whole number is obtained in above part. It is the data that multiply each value by 100 to ‘clear’ decimals from the data. The frequency table for whole number is as follows:
class limits | class boundaries | Midpoints |
46-85 | 45.5-85.5 | 65.5 |
86-125 | 85.5-125.5 | 105.5 |
126-165 | 125.5-165.5 | 145.5 |
166-205 | 165.5-205.5 | 185.5 |
206-245 | 205.5-245.5 | 225.5 |
246-285 | 245.5-285.5 | 265.5 |
To find the decimal or original data, divide the class limits, class boundaries and midpoints by 100. The calculation as follows:
class limits | class boundaries | Midpoints |
0.46-0.85 | 0.455-0.855 | 0.655 |
0.86-1.25 | 0.855-1.255 | 1.055 |
1.26-1.65 | 1.255-1.655 | 1.455 |
1.66-2.05 | 1.655-2.055 | 1.855 |
2.06-2.45 | 2.055-2.455 | 2.255 |
2.46-2.85 | 2.455-2.855 | 2.655 |
Interpretation: Hence, the data divide by 100 is as:
class limits | class boundaries | Midpoints |
0.46-0.85 | 0.455-0.855 | 0.655 |
0.86-1.25 | 0.855-1.255 | 1.055 |
1.26-1.65 | 1.255-1.655 | 1.455 |
1.66-2.05 | 1.655-2.055 | 1.855 |
2.06-2.45 | 2.055-2.455 | 2.255 |
2.46-2.85 | 2.455-2.855 | 2.655 |
Want to see more full solutions like this?
Chapter 2 Solutions
EBK UNDERSTANDING BASIC STATISTICS
- A 24-1 design has been used to investigate the effect of four factors on the resistivity of a silicon wafer. The data from this experiment are shown in Table 4. Table 4: Resistivity Experiment for Exercise 5 Run A B с D Resistivity 1 23 2 3 4 5 6 7 8 9 10 11 12 I+I+I+I+Oooo 0 0 ||++TI++o000 33.2 4.6 31.2 9.6 40.6 162.4 39.4 158.6 63.4 62.6 58.7 0 0 60.9 3 (a) Estimate the factor effects. Plot the effect estimates on a normal probability scale. (b) Identify a tentative model for this process. Fit the model and test for curvature. (c) Plot the residuals from the model in part (b) versus the predicted resistivity. Is there any indication on this plot of model inadequacy? (d) Construct a normal probability plot of the residuals. Is there any reason to doubt the validity of the normality assumption?arrow_forwardStem1: 1,4 Stem 2: 2,4,8 Stem3: 2,4 Stem4: 0,1,6,8 Stem5: 0,1,2,3,9 Stem 6: 2,2 What’s the Min,Q1, Med,Q3,Max?arrow_forwardAre the t-statistics here greater than 1.96? What do you conclude? colgPA= 1.39+0.412 hsGPA (.33) (0.094) Find the P valuearrow_forward
- A poll before the elections showed that in a given sample 79% of people vote for candidate C. How many people should be interviewed so that the pollsters can be 99% sure that from 75% to 83% of the population will vote for candidate C? Round your answer to the whole number.arrow_forwardSuppose a random sample of 459 married couples found that 307 had two or more personality preferences in common. In another random sample of 471 married couples, it was found that only 31 had no preferences in common. Let p1 be the population proportion of all married couples who have two or more personality preferences in common. Let p2 be the population proportion of all married couples who have no personality preferences in common. Find a95% confidence interval for . Round your answer to three decimal places.arrow_forwardA history teacher interviewed a random sample of 80 students about their preferences in learning activities outside of school and whether they are considering watching a historical movie at the cinema. 69 answered that they would like to go to the cinema. Let p represent the proportion of students who want to watch a historical movie. Determine the maximal margin of error. Use α = 0.05. Round your answer to three decimal places. arrow_forward
- A random sample of medical files is used to estimate the proportion p of all people who have blood type B. If you have no preliminary estimate for p, how many medical files should you include in a random sample in order to be 99% sure that the point estimate will be within a distance of 0.07 from p? Round your answer to the next higher whole number.arrow_forwardA clinical study is designed to assess the average length of hospital stay of patients who underwent surgery. A preliminary study of a random sample of 70 surgery patients’ records showed that the standard deviation of the lengths of stay of all surgery patients is 7.5 days. How large should a sample to estimate the desired mean to within 1 day at 95% confidence? Round your answer to the whole number.arrow_forwardA clinical study is designed to assess the average length of hospital stay of patients who underwent surgery. A preliminary study of a random sample of 70 surgery patients’ records showed that the standard deviation of the lengths of stay of all surgery patients is 7.5 days. How large should a sample to estimate the desired mean to within 1 day at 95% confidence? Round your answer to the whole number.arrow_forward
- In the experiment a sample of subjects is drawn of people who have an elbow surgery. Each of the people included in the sample was interviewed about their health status and measurements were taken before and after surgery. Are the measurements before and after the operation independent or dependent samples?arrow_forwardiid 1. The CLT provides an approximate sampling distribution for the arithmetic average Ỹ of a random sample Y₁, . . ., Yn f(y). The parameters of the approximate sampling distribution depend on the mean and variance of the underlying random variables (i.e., the population mean and variance). The approximation can be written to emphasize this, using the expec- tation and variance of one of the random variables in the sample instead of the parameters μ, 02: YNEY, · (1 (EY,, varyi n For the following population distributions f, write the approximate distribution of the sample mean. (a) Exponential with rate ẞ: f(y) = ß exp{−ßy} 1 (b) Chi-square with degrees of freedom: f(y) = ( 4 ) 2 y = exp { — ½/ } г( (c) Poisson with rate λ: P(Y = y) = exp(-\} > y! y²arrow_forward2. Let Y₁,……., Y be a random sample with common mean μ and common variance σ². Use the CLT to write an expression approximating the CDF P(Ỹ ≤ x) in terms of µ, σ² and n, and the standard normal CDF Fz(·).arrow_forward
- Functions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillMathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,Big Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin Harcourt
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337111348/9781337111348_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780547587776/9780547587776_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780079039897/9780079039897_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781680331141/9781680331141_smallCoverImage.jpg)