Concept explainers
(i)
The factor by which the average kinetic energy of the molecules changes.
(i)
Answer to Problem 21.8OQ
Option (b), by a factor of
Explanation of Solution
Given info: The initial temperature of an ideal gas is
Formula to calculate the initial average kinetic energy of the gas molecules is,
Here,
Formula to calculate the final average kinetic energy of the gas molecules is,
Here,
Divide equation (2) by equation (1).
Substitute
Conclusion:
The average kinetic energy of the gas molecules increase by a factor of
The average kinetic energy of the gas molecules increase by a factor of
The average kinetic energy of the gas molecules increase by a factor
The average kinetic energy of the gas molecules increase by a factor of
The average kinetic energy of the gas molecules increase by a factor of
(ii)
The factor by which the rms speed of the gas molecules changes.
(ii)
Answer to Problem 21.8OQ
Option (c) a factor of
Explanation of Solution
Given info: The initial temperature of an ideal gas is
Formula to calculate the initial rms speed for the molecules of gas is,
Here,
Formula to calculate the final rms speed for the molecules of gas is,
Divide equation (5) by equation (4).
Substitute
Conclusion:
The rms speed of the gas molecules increase by a factor of
The rms speed of the gas molecules increase by a factor of
The rms speed of the gas molecules increase by a factor of
The rms speed of the gas molecules increase by a factor of
The rms speed of the gas molecules increase by a factor of
(iii)
The factor by which the average momentum changes.
(iii)
Answer to Problem 21.8OQ
Option (c) a factor of
Explanation of Solution
Given info: The initial temperature of an ideal gas is
Formula to calculate the initial average kinetic energy of the gas molecules is,
Here,
Formula to calculate the final average kinetic energy of the gas molecules is,
Here,
From equation (3), the relation between the final and average kinetic energy is given as,
Substitute
Formula to calculate the average momentum of a molecule is,
From the above equation the average momentum of a molecule that undergoes in a collision with particular wall is directly proportional to the average speed of a gas molecule. But from the equation (7), the final average speed of a gas molecule increases by a factor of
Conclusion:
The average momentum of a molecule is increase by a factor of
The average momentum of a molecule is increase by a factor of
The average momentum of a molecule is increase by a factor of
The average momentum of a molecule is increase by a factor of
The average momentum of a molecule is increase by a factor of
(iv)
The factor by which the rate of collision of molecules changes.
(iv)
Answer to Problem 21.8OQ
Option (c) a factor of
Explanation of Solution
Given info: The initial temperature of an ideal gas is
Formula to calculate the average rate of collision of molecules with the walls is,
From the above equation the time required for the collision of molecules is inversely proportional to the average speed of the gas molecules but from equation (7), the final average speed of a gas molecule increases by a factor of
Conclusion:
The rate of collision of molecules with walls change by a factor of
The rate of collision of molecules with walls change by a factor of
The rate of collision of molecules with walls change by a factor of
The rate of collision of molecules with walls change by a factor of
The rate of collision of molecules with walls change by a factor of
(v)
The factor by which the pressure of gas changes.
(v)
Answer to Problem 21.8OQ
Option (b) a factor of
Explanation of Solution
Given info: The initial temperature of an ideal gas is
Formula to calculate the pressure of
From the above pressure of gas is directly proportional to the average kinetic energy of the gas molecules but from equation (6), the final average kinetic energy of gas molecules increases by a factor of
Conclusion:
The pressure of gas change by a factor of
The pressure of gas change by a factor of
The pressure of gas change by a factor of
The pressure of gas change by a factor of
The pressure of gas change by a factor of
Want to see more full solutions like this?
Chapter 21 Solutions
Physics for Scientists and Engineers
- Page 2 SECTION A Answer ALL questions in Section A [Expect to use one single-sided A4 page for each Section-A sub question.] Question A1 SPA6308 (2024) Consider Minkowski spacetime in Cartesian coordinates th = (t, x, y, z), such that ds² = dt² + dx² + dy² + dz². (a) Consider the vector with components V" = (1,-1,0,0). Determine V and V. V. (b) Consider now the coordinate system x' (u, v, y, z) such that u =t-x, v=t+x. [2 marks] Write down the line element, the metric, the Christoffel symbols and the Riemann curvature tensor in the new coordinates. [See the Appendix of this document.] [5 marks] (c) Determine V", that is, write the object in question A1.a in the coordinate system x'. Verify explicitly that V. V is invariant under the coordinate transformation. Question A2 [5 marks] Suppose that A, is a covector field, and consider the object Fv=AAμ. (a) Show explicitly that F is a tensor, that is, show that it transforms appropriately under a coordinate transformation. [5 marks] (b)…arrow_forwardHow does boiling point of water decreases as the altitude increases?arrow_forwardNo chatgpt pls will upvotearrow_forward
- 14 Z In figure, a closed surface with q=b= 0.4m/ C = 0.6m if the left edge of the closed surface at position X=a, if E is non-uniform and is given by € = (3 + 2x²) ŷ N/C, calculate the (3+2x²) net electric flux leaving the closed surface.arrow_forwardNo chatgpt pls will upvotearrow_forwardsuggest a reason ultrasound cleaning is better than cleaning by hand?arrow_forward
- Checkpoint 4 The figure shows four orientations of an electric di- pole in an external electric field. Rank the orienta- tions according to (a) the magnitude of the torque on the dipole and (b) the potential energy of the di- pole, greatest first. (1) (2) E (4)arrow_forwardWhat is integrated science. What is fractional distillation What is simple distillationarrow_forward19:39 · C Chegg 1 69% ✓ The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take F=1700 lb. (Figure 1) Figure 800 lb ||-5- F 600 lb بتا D E C BO 10 ft 5 ft 4 ft-—— 6 ft — 5 ft- Solved Part A The compound beam is fixed at E and... Hình ảnh có thể có bản quyền. Tìm hiểu thêm Problem A-12 % Chia sẻ kip 800 lb Truy cập ) D Lưu of C 600 lb |-sa+ 10ft 5ft 4ft6ft D E 5 ft- Trying Cheaa Những kết quả này có hữu ích không? There are pins at C and D To F-1200 Egue!) Chegg Solved The compound b... Có Không ☑ ||| Chegg 10 וחarrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College