EBK PHYSICS FOR SCIENTISTS AND ENGINEER
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
9th Edition
ISBN: 8220100454899
Author: Jewett
Publisher: Cengage Learning US
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 21, Problem 21.61AP

(a)

To determine

The rms speed for a particle of diameter d .

(a)

Expert Solution
Check Mark

Answer to Problem 21.61AP

The rms speed for a particle of diameter d is (4.82×1012)d32m/s .

Explanation of Solution

Given info: Density of spherical particle is 1.00×103kg/m3 , temperature is 20.0°C and diameter of particle is d .

Write the expression for the rms speed:

vrms=3kBTm (1)

Here,

vrms is rms speed of particle.

kB is boltzmann’s constant.

T is temperature.

m is mass of gas molecule.

Write the formula for mass:

m=ρ×V (2)

Here,

ρ is density of spherical particle.

V is volume of spherical particle.

Write the formula for volume of spherical particle:

V=43πr3 (3)

It is given that diameter of spherical particle is d . So, the radius of spherical particle is d2 .

Substitute 3.14 for π and d2m for r in equation (3).

V=43(3.14)(d2m)3=0.52d3m3

Substitute 1.00×103kg/m3 for ρ and 0.52d3m3 for V in equation (2).

m=(1.00×103kg/m3)(0.52d3m3)=520d3kg

Since, boltzmann’s constant is 1.38×1023J/K .

Substitute 520d3kg for m , 20.0°C for T and 1.38×1023J/K for kB in equation (1).

vrms=3(1.38×1023J/K×1kgm2/s21J)(20.0+273K)520d3kg=(4.82×1012)d32m/s

Conclusion:

Therefore, the rms speed for a particle of diameter d is (4.82×1012)d32m/s .

(b)

To determine

The time interval for particle to move a distance equal to its own diameter.

(b)

Expert Solution
Check Mark

Answer to Problem 21.61AP

The time interval for particle to move a distance equal to its own diameter is (2.08×1011)d52s .

Explanation of Solution

Given info: Density of spherical particle is 1.00×103kg/m3 and temperature is 20.0°C .

Write the expression for the time interval related to rms:

t=dvrms (4)

Here,

t is time interval.

d is distance.

vrms is rms speed.

Since particle is moving equal to its diameter. So, the distance travelled by the particles is d .

Substitute d for d and (4.82×1012)d32m/s for vrms as calculated in above part in equation (3).

t=dm(4.82×1012)d32m/s=(2.08×1011)d52s

Conclusion:

Therefore, the time interval for particle to move a distance equal to its own diameter is (2.08×1011)d52s .

(c)

To determine

The rms speed and the time interval for a particle of diameter 3.00μm .

(c)

Expert Solution
Check Mark

Answer to Problem 21.61AP

The rms speed for a particle of diameter 3.00μm is 0.926mm/s and the time interval for a particle of diameter 3.00μm is 3.24ms .

Explanation of Solution

Given info: Density of spherical particle is 1.00×103kg/m3 , temperature is 20.0°C and diameter of particle is 3.00μm .

The rms speed for a particle of diameter d as calculated in above part is,

vrms= (4.82×1012)d32m/s

Substitute 3.00μm for d in above equation.

vrms=(4.82×1012)(3.00μm×106m1μm)32m/s=9.27×104m/s×103mm1m0.926mm/s

The time interval for a particle of diameter d as calculated in above part is,

t=(2.08×1011)d52s

Substitute 3.00μm for d in above equation.

t=(2.08×1011)(3.00μm×106m1μm)52m1s=0.00324s×103ms1s=3.24ms

Conclusion:

Therefore, the rms speed for a particle of diameter 3.00μm is 0.926mm/s and the time interval for a particle of diameter 3.00μm is 3.24ms .

(d)

To determine

The rms speed and the time interval for a sphere of 70.0kg .

(d)

Expert Solution
Check Mark

Answer to Problem 21.61AP

The rms speed for a sphere of 70.0kg is 1.32×1011m/s and the time interval for a sphere of 70.0kg is 3.88×1010s .

Explanation of Solution

Given info: Density of spherical particle is 1.00×103kg/m3 , temperature is 20.0°C and mass of the sphere is 70.0kg .

Write the expression for the rms speed:

vrms=3kBTm (5)

Here,

vrms is rms speed of particle.

kB is boltzmann’s constant.

T is temperature.

m is mass of sphere.

Substitute 70.0kg for m , 20.0°C for T and 1.38×1023J/K for kB in equation (5).

vrms=3(1.38×1023J/K×1kgm2/s21J)(20.0+273K)70.0kg=1.32×1011m/s

Thus, the rms speed of the partical is 1.32×1011m/s .

Write the formaula for volume in relation to mass and density.

V=mD

Here,

D is density.

Substitute 70.0kg for m and 1.00×103kg/m3 in above equation.

V=70.0kg1.00×103kg/m3=0.07m3

Write the formula for the volume of sphere:

V=43π(d2)3

Here,

V is volume of sphere.

d is diameter of sphere.

Rearrange above equation for d .

(d2)3=3V4πd=2(3V4π)13 (6)

Substitute 0.07m3 for V and 3.14 for π in equation (6).

d=2(3×0.07m34×3.14)13=0.51m

Write the expression for the time interval related to rms:

t=dvrms

Substitute d for d in above equation.

t=dvrms

Substitute 0.51m for d and 1.32×1011m/s for vrms in above equation.

t=0.51m1.32×1011m/s=3.86×1010s

Conclusion:

Therefore, the rms speed for a sphere of 70.0kg is 1.32×1011m/s and the time interval for a sphere of 70.0kg is 3.88×1010s .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Statistical thermodynamics. The number of imaginary replicas of a system of N particlesa) cannot be greater than Avogadro's numberb) must always be greater than Avogadro's number.c) has no relation to Avogadro's number.
Lab-Based Section Use the following information to answer the lab based scenario. A student performed an experiment in an attempt to determine the index of refraction of glass. The student used a laser and a protractor to measure a variety of angles of incidence and refraction through a semi-circular glass prism. The design of the experiment and the student's results are shown below. Angle of Incidence (°) Angle of Refraction (º) 20 11 30 19 40 26 50 31 60 36 70 38 2a) By hand (i.e., without using computer software), create a linear graph on graph paper using the student's data. Note: You will have to manipulate the data in order to achieve a linear function. 2b) Graphically determine the index of refraction of the semi-circular glass prism, rounding your answer to the nearest hundredth.
Use the following information to answer the next two questions. A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in the diagram. 3a) Determine the critical angle of zircon. 35.0° 70° 55 55° 3b) Determine the angle of refraction when the laser beam leaves the prism.

Chapter 21 Solutions

EBK PHYSICS FOR SCIENTISTS AND ENGINEER

Ch. 21 - A sample of gas with a thermometer immersed in the...Ch. 21 - Prob. 21.8OQCh. 21 - Which of the assumptions below is not made in the...Ch. 21 - Hot air rises, so why does it generally become...Ch. 21 - Prob. 21.2CQCh. 21 - When alcohol is rubbed on your body, it lowers...Ch. 21 - What happens to a helium-filled latex balloon...Ch. 21 - Which is denser, dry air or air saturated with...Ch. 21 - One container is filled with helium gas and...Ch. 21 - Daltons law of partial pressures states that the...Ch. 21 - (a) How many atoms of helium gas fill a spherical...Ch. 21 - A cylinder contains a mixture of helium and argon...Ch. 21 - Prob. 21.3PCh. 21 - In an ultrahigh vacuum system (with typical...Ch. 21 - A spherical balloon of volume 4.00 103 cm3...Ch. 21 - A spherical balloon of volume V contains helium at...Ch. 21 - A 2.00-mol sample of oxygen gas is confined to a...Ch. 21 - Oxygen, modeled as an ideal gas, is in a container...Ch. 21 - Prob. 21.9PCh. 21 - The rms speed of an oxygen molecule (O2) in a...Ch. 21 - A 5.00-L vessel contains nitrogen gas at 27.0C and...Ch. 21 - A 7.00-L vessel contains 3.50 moles of gas at a...Ch. 21 - In a period of 1.00 s, 5.00 1023 nitrogen...Ch. 21 - In a constant-volume process, 209 J of energy is...Ch. 21 - A sample of a diatomic ideal gas has pressure P...Ch. 21 - Review. A house has well-insulated walls. It...Ch. 21 - A 1.00-mol sample of hydrogen gas is healed at...Ch. 21 - A vertical cylinder with a heavy piston contains...Ch. 21 - Calculate the change in internal energy of 3.00...Ch. 21 - A 1.00-L insulated bottle is full of tea at 90.0C....Ch. 21 - Review. This problem is a continuation of Problem...Ch. 21 - A certain molecule has f degrees of freedom. Show...Ch. 21 - In a crude model (Fig. P21.23) of a rotating...Ch. 21 - Why is the following situation impossible? A team...Ch. 21 - Prob. 21.25PCh. 21 - A 2.00-mol sample of a diatomic ideal gas expands...Ch. 21 - During the compression stroke of a certain...Ch. 21 - How much work is required to compress 5.00 mol of...Ch. 21 - Air in a thundercloud expands as it rises. If its...Ch. 21 - Why is the following situation impossible? A new...Ch. 21 - During the power stroke in a four-stroke...Ch. 21 - Air (a diatomic ideal gas) at 27.0C and...Ch. 21 - A 4.00-L sample of a diatomic ideal gas with...Ch. 21 - Prob. 21.34PCh. 21 - Prob. 21.35PCh. 21 - Fifteen identical particles have various speeds:...Ch. 21 - Prob. 21.37PCh. 21 - Prob. 21.38PCh. 21 - Prob. 21.39PCh. 21 - Consider a container of nitrogen gas molecules at...Ch. 21 - Prob. 21.41PCh. 21 - Prob. 21.42PCh. 21 - The law of atmospheres states that the number...Ch. 21 - Prob. 21.44APCh. 21 - Prob. 21.45APCh. 21 - The dimensions of a classroom are 4.20 m 3.00 m ...Ch. 21 - The Earths atmosphere consists primarily of oxygen...Ch. 21 - Prob. 21.48APCh. 21 - An air rifle shoots a lead pellet by allowing high...Ch. 21 - Prob. 21.50APCh. 21 - A certain ideal gas has a molar specific heat of...Ch. 21 - Prob. 21.52APCh. 21 - Review. Oxygen at pressures much greater than 1...Ch. 21 - Prob. 21.54APCh. 21 - Model air as a diatomic ideal gas with M = 28.9...Ch. 21 - Review. As a sound wave passes through a gas, the...Ch. 21 - Prob. 21.57APCh. 21 - In a cylinder, a sample of an ideal gas with...Ch. 21 - As a 1.00-mol sample of a monatomic ideal gas...Ch. 21 - A sample consists of an amount n in moles of a...Ch. 21 - Prob. 21.61APCh. 21 - A vessel contains 1.00 104 oxygen molecules at...Ch. 21 - A pitcher throws a 0.142-kg baseball at 47.2 m/s....Ch. 21 - The latent heat of vaporization for water at room...Ch. 21 - A sample of a monatomic ideal gas occupies 5.00 L...Ch. 21 - Prob. 21.66APCh. 21 - Prob. 21.67APCh. 21 - Prob. 21.68APCh. 21 - Prob. 21.69APCh. 21 - On the PV diagram for an ideal gas, one isothermal...Ch. 21 - Prob. 21.71APCh. 21 - Review, (a) H it has enough kinetic energy, a...Ch. 21 - Prob. 21.73APCh. 21 - Prob. 21.74CPCh. 21 - A cylinder is closed at both ends and has...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Kinetic Molecular Theory and its Postulates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=o3f_VJ87Df0;License: Standard YouTube License, CC-BY