
Model air as a diatomic ideal gas with M = 28.9 g/mol. A cylinder with a piston contains 1.20 kg of air at 25.0°C and 2.00 × 105 Pa. Energy is transferred by heat into the system as it is permitted to expand, with the pressure rising to 4.00 × 105 Pa. Throughout the expansion, the relationship between pressure and volume is given by P = CV1/2 where C is a constant. Find (a) the initial volume, (b) the final volume, (c) the final temperature, (d) the work done on the air, and (e) the energy transferred by heat.
(a)

The initial volume.
Answer to Problem 21.55AP
The initial volume is
Explanation of Solution
Given info: Molar mass is
Write the expression for ideal gas equation.
Here,
Reaarange above equation for
Write the expression for number of moles of gas.
Here,
Substitute
Thus, the number of moles of gas is
Substitute
Conclusion:
Therefore, the initial volume is
(b)

The final volume.
Answer to Problem 21.55AP
The final volume is
Explanation of Solution
Given info: Molar mass is
Write the expression for the relationship between pressure and volume for adiabatic process for an ideal gas:
Rearrange equation (4) for
Square both side in above equation.
Substitute
Conclusion:
Therefore, final volume is
(c)

The final temperature.
Answer to Problem 21.55AP
The final temperature is
Explanation of Solution
Given info: Molar mass is
Write the expression for ideal gas equation.
Here,
Rearrange above equation for
Substitute
Conclusion:
Therefore, the final temperature is
(d)

The workdone on the air.
Answer to Problem 21.55AP
The work done on the air is
Explanation of Solution
Given info: Molar mass is
Write the expression for work done.
Here,
Write the expression for relationship between pressure and volume:
Here,
Rewrite above expression for
Substitute
Substitute
Substitute
Conclusion:
Therefore, the work done on the air is
(e)

The energy transferred by heat.
Answer to Problem 21.55AP
The energy transferred as heat is
Explanation of Solution
Given info: Molar mass is
The molar specific heat at constant pressure is,
Write the expression for change in internal energy.
Here,
Substitute
Here,
Substitute
Thus, the change in internal energy is
Write the expression for the energy transferred as heat.
Here,
Substitute
Conclusion:
Therefore, the energy transferred as heat is
Want to see more full solutions like this?
Chapter 21 Solutions
Physics for Scientists and Engineers, Technology Update, Hybrid Edition (with Enhanced WebAssign Multi-Term LOE Printed Access Card for Physics)
- A 11.8 L gas tank containing 3.90 moles of ideal He gas at 26.0°C is placed inside a completely evacuated insulated bell jar of volume 39.0 L .A small hole in the tank allows the He to leak out into the jar until the gas reaches a final equilibrium state with no more leakage. Part A What is the change in entropy of this system due to the leaking of the gas? ■ ΜΕ ΑΣΦ AS = ? J/K Submit Request Answer Part B Is the process reversible or irreversible?arrow_forwardA-E pleasearrow_forwardThree moles of an ideal gas undergo a reversible isothermal compression at 20.0° C. During this compression, 1900 J of work is done on the gas. For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of Entropy change in a free expansion. Part A What is the change of entropy of the gas? ΤΕ ΑΣΦ AS = Submit Request Answer J/Karrow_forward
- 5.97 Block A, with weight 3w, slides down an inclined plane S of slope angle 36.9° at a constant speed while plank B, with weight w, rests on top of A. The plank is attached by a cord to the wall (Fig. P5.97). (a) Draw a diagram of all the forces acting on block A. (b) If the coefficient of kinetic friction is the same between A and B and between S and A, determine its value. Figure P5.97 B A S 36.9°arrow_forwardPlease take your time and solve each part correctly please. Thank you!!arrow_forwardhelp me answer this with explanations! thanks so mucharrow_forward
- No chatgpt pls will upvote Alreadyarrow_forwardWhat fuel economy should be expected from a gasoline powered car that encounters a total of 443N of resistive forces while driving down the road? (Those forces are from air drag, rolling resistance and bearing losses.) Assume a 30% thermodynamic efficiency.arrow_forwardNo chatgpt pls will upvotearrow_forward
- 12. What is the angle between two unit vectors if their dot product is 0.5?arrow_forwardIf the car in the previous problem increases its power output by 10% (by pressing the gas pedal farther down), at what rate will the car accelerate? Hint: Consider the net force. In the previous problem the power was 31.8kWarrow_forwardWhat power is required (at the wheels) for a 1400 kg automobile to climb a 4% grade at a constant speed 30 m/s while it is opposed by drag and rolling resistance forces totaling 500 N?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





