A certain ideal gas has a molar specific heat of Cv =
(a)
The final pressure, final volume, final temperature, change in the internal energy, the energy added to the gas by heat and the work done on the gas.
Answer to Problem 21.51AP
The final pressure is
Explanation of Solution
Given info: The molar specific heat of the gas at constant volume is
The value of universal gas constant is
The gas is heated at constant pressure.
Write the expression for molar specific heat of the gas at constant pressure.
Here,
Substitute
The gas is heated at constant pressure, therefore the final pressure of the gas is equal to the initial pressure of the gas.
The expression for the final pressure of the gas is,
Here,
Substitute
The final pressure of the gas is
The final temperature is the temperature to which the gas is heated.
The value of final temperature of the gas is,
Write the expression for the change in the temperature of the gas.
Here,
Substitute
The ideal gas equation is,
Here,
Rearrange the above equation for the value of
Substitute
Substitute
Thus, the final volume of the gas is
The expression for the change in the internal energy of the gas is,
Substitute
Substitute
Thus the change in the internal energy of the gas is
The expression for the energy added to the gas by heat is,
Substitute
Substitute
Thus the energy added to the gas by heat is
The formula for the work done on the gas is,
Substitute
Thus the work done on the gas is
Conclusion:
Therefore, for the gas, the final pressure is
(b)
The final pressure, final volume, final temperature, change in the internal energy, the energy added to the gas by heat and the work done on the gas.
Answer to Problem 21.51AP
For the gas, the final pressure is
Explanation of Solution
Given info: The molar specific heat of the gas at constant volume is
The value of universal gas constant is
The gas is heated at constant volume.
The gas is heated at constant volume, therefore the final volume of the gas is equal to the initial pressure of the gas.
The formula or ideal gas is,
Rearrange the above equation for the value of
Substitute
Write the expression for the final volume of the gas.
Substitute
Substitute
Thus, the final volume of the gas is
The final temperature is the temperature to which the gas is heated.
The value of final temperature of the gas is,
Write the expression for the change in the temperature of the gas.
Here,
Substitute
Write the expression for ideal gas.
Rearrange the above equation for the value of
Substitute
Substitute
Divide equation (2) from equation (1).
Substitute
The expression for the change in the internal energy of the gas is,
Substitute
Substitute
Thus the change in the internal energy of the gas is
The formula for the energy added to the gas by heat for constant volume is,
Substitute
Substitute
Substitute
Thus the energy added to the gas by heat is
The forrmula for the work done on the gas is,
Substitute
Thus the work done on the gas is
Conclusion:
Therefore, for the gas, the final pressure is
(c)
The final pressure, final volume, final temperature, change in the internal energy, the energy added to the gas by heat and the work done on the gas.
Answer to Problem 21.51AP
For the gas, the final pressure is
Explanation of Solution
Given info: The molar specific heat of the gas at constant volume is
The value of universal gas constant is
The gas is compressed at constant temperature.
The gas is heated at constant volume, therefore the final volume of the gas is equal to the initial pressure of the gas.
The formula for ideal gas is,
Rearrange the above equation for the value of
Substitute
Substitute
Thus, the initial volume of the gas is
Substitute
Substitute
Thus, the final volume of the gas is
The expression for the final temperature of the gas is,
Substitute
The final temperature of the gas is
The expression for the change in the temperature of the gas is,
Substitute
The final pressure of the gas is the pressure at which the gas is compressed.
The value of final; pressure of the gas is,
The expression for the change in the internal energy of the gas is,
Substitute
Substitute
Thus the change in the internal energy of the gas is
The expression for the work done on the gas is,
Divide and multiply the above equation by
Substitute
Substitute
Thus, the work done on the system is
The expression for the energy added to the gas by heat for constant volume is,
Substitute
Thus the energy added to the gas by heat is
Conclusion:
Therefore, for the gas, the final pressure is
(d)
The final pressure, final volume, final temperature, change in the internal energy, the energy added to the gas by heat and the work done on the gas.
Answer to Problem 21.51AP
For the gas, the final pressure is
Explanation of Solution
Given info: The molar specific heat of the gas at constant volume is
The value of universal gas constant is
The gas is compressed adiabatically to the final pressure.
The value of the final pressure is,
Thus, the value of the final pressure is
The expression for the ratio of the specific heats is,
Substitute
The expression for an adiabatic process for the initial condition of gas is,
Here,
The expression for an adiabatic process for the final condition of gas is,
Divide equation (4) by equation (3).
Rearrange the above equation for the value of
Substitute
Thus, the final value of the volume is
The expression for ideal gas is,
Rearrange the above equation .
Substitute
Substitute
Divide equation (7) by equation (6).
Rearrange the above expression for the value of
Substitute
The expression for the change in the temperature of the gas is,
Here,
Substitute
Thus the change in the temperature is
The expression for the change in the internal energy of the gas is,
Substitute
Substitute
Thus the change in the internal energy of the gas is
The adiabatic process is insulated to heat supplied externally.
The expression for the energy added to the gas by heat is,
Thus the energy added to the gas by heat is
The expression for the work done on the gas is,
Substitute
Thus the work done on the gas is
Conclusion:
Therefore, for the gas, the final pressure is
Want to see more full solutions like this?
Chapter 21 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- Plastic beads can often carry a small charge and therefore can generate electric fields. Three beads are oriented such that 92 is between q₁ and 93. The sum of the charge on 9₁ and 92 is 9₁ + 92 = −2.9 µС, and the net charge of the system of all three beads is zero. E field lines 93 92 What charge does each bead carry? 91 92 -1.45 What is the net charge of the system? What charges have to be equal? μC 2.9 ✓ What is the net charge of the system? What charges have to be equal? μC 93 2.9 μεarrow_forwardNo chatgpt pls will upvotearrow_forwardPoint charges of 6.50 μC and -2.50 μC are placed 0.300 m apart. (Assume the negative charge is located to the right of the positive charge. Include the sign of the value in your answers.) (a) Where can a third charge be placed so that the net force on it is zero? 0.49 m to the right of the -2.50 μC charge (b) What if both charges are positive? 0.49 xm to the right of the 2.50 μC chargearrow_forward
- Find the electric field at the location of q, in the figure below, given that q₁ =9c9d = +4.60 nC, q = -1.00 nC, and the square is 20.0 cm on a side. (The +x axis is directed to the right.) magnitude direction 2500 x What symmetries can you take advantage of? What charges are the same magnitude and the same distance away? N/C 226 × How does charge sign affect the direction of the electric field? counterclockwise from the +x-axis 9a 9b % 9 9darrow_forwardwould 0.215 be the answer for part b?arrow_forwardSuppose a toy boat moves in a pool at at a speed given by v=1.0 meter per second at t=0, and that the boat is subject to viscous damping. The damping on the boat causes the rate of speed loss to be given by the expression dv/dt=-2v. How fast will the boat be traveling after 1 second? 3 seconds? 10 seconds? Use separation of variables to solve this.arrow_forward
- What functional form do you expect to describe the motion of a vibrating membrane without damping and why?arrow_forwardIf speed is tripled, how much larger will air drag become for an object? Show the math.arrow_forwardWhat does it tell us about factors on which air drag depends if it is proportional to speed squared?arrow_forward
- What is the net charge on a sphere that has the following? x (a) 5.75 × 106 electrons and 8.49 × 106 protons 4.39e-13 What is the charge of an electron? What is the charge of a proton? C (b) 200 electrons and 109 protons 1.60e-10 What is the charge of an electron? What is the charge of a proton? Carrow_forwardA spider begins to spin a web by first hanging from a ceiling by his fine, silk fiber. He has a mass of 0.025 kg and a charge of 3.5 μC. A second spider with a charge of 4.2 μC rests in her own web exactly 2.1 m vertically below the first spider. (a) What is the magnitude of the electric field due to the charge on the second spider at the position of the first spider? 8.57e3 N/C (b) What is the tension in the silk fiber above the first spider? 0.125 How does the electric field relate to the force? How do you calculate the net force? Narrow_forwardPoint charges of 6.50 μC and -2.50 μC are placed 0.300 m apart. (Assume the negative charge is located to the right of the positive charge. Include the sign of the value in your answers.) (a) Where can a third charge be placed so that the net force on it is zero? 0.49 m to the right of the -2.50 μC charge (b) What if both charges are positive? 0.185 xm to the right of the 2.50 μC chargearrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning