In Example 21.4, suppose the point charge on the y -axis at y = −0.30 m has negative charge −2.0 μ C, and the other charges remain the same. Find the magnitude and direction of the net force on Q . How does your answer differ from that in Example 21.4? Explain the differences. Example 21.4 VECTOR ADDITION OF ELECTRIC FORCES Two equal positive charges q 1 – q 2 – 2.0 μ C are located at x = 0, y = 0.30 m and x = 0, y = −0.30 m. respectively. What are the magnitude and direction of the total electric force that q 1 and q 2 exert on a third charge Q = 4.0 μ C at x = 0.40 m, y = 0? SOLUTION IDENTIFY and SET UP: As in Example 21.3, we must compute the force that each charge exerts on Q and then find the vector sum of those forces. Figure 21.14 shows the situation. Since the three charges do not all lie on a line, the best way to calculate the forces is to use components. Figure 21.14 Our sketch for this problem.
In Example 21.4, suppose the point charge on the y -axis at y = −0.30 m has negative charge −2.0 μ C, and the other charges remain the same. Find the magnitude and direction of the net force on Q . How does your answer differ from that in Example 21.4? Explain the differences. Example 21.4 VECTOR ADDITION OF ELECTRIC FORCES Two equal positive charges q 1 – q 2 – 2.0 μ C are located at x = 0, y = 0.30 m and x = 0, y = −0.30 m. respectively. What are the magnitude and direction of the total electric force that q 1 and q 2 exert on a third charge Q = 4.0 μ C at x = 0.40 m, y = 0? SOLUTION IDENTIFY and SET UP: As in Example 21.3, we must compute the force that each charge exerts on Q and then find the vector sum of those forces. Figure 21.14 shows the situation. Since the three charges do not all lie on a line, the best way to calculate the forces is to use components. Figure 21.14 Our sketch for this problem.
In Example 21.4, suppose the point charge on the y-axis at y = −0.30 m has negative charge −2.0μC, and the other charges remain the same. Find the magnitude and direction of the net force on Q. How does your answer differ from that in Example 21.4? Explain the differences.
Example 21.4 VECTOR ADDITION OF ELECTRIC FORCES
Two equal positive charges q1 – q2 – 2.0 μC are located at x = 0, y = 0.30 m and x = 0, y = −0.30 m. respectively. What are the magnitude and direction of the total electric force that q1 and q2 exert on a third charge Q = 4.0 μC at x = 0.40 m, y = 0?
SOLUTION
IDENTIFY and SET UP: As in Example 21.3, we must compute the force that each charge exerts on Q and then find the vector sum of those forces. Figure 21.14 shows the situation. Since the three charges do not all lie on a line, the best way to calculate the forces is to use components.
I do not understand the process to answer the second part of question b. Please help me understand how to get there!
Rank the six combinations of electric charges on the basis of the electric force acting on 91. Define forces pointing to the right as positive and forces pointing to the left as negative.
Rank in increasing order by placing the most negative on the left and the most positive on the right. To rank items as equivalent, overlap them.
▸ View Available Hint(s)
[most negative
91 = +1nC
92 = +1nC
91 = -1nC
93 = +1nC
92- +1nC
93 = +1nC
-1nC
92- -1nC
93- -1nC
91= +1nC
92 = +1nC
93=-1nC
91
+1nC
92=-1nC
93=-1nC
91 = +1nC
2 = −1nC
93 = +1nC
The correct ranking cannot be determined.
Reset
Help
most positive
Part A
Find the x-component of the electric field at the origin, point O.
Express your answer in newtons per coulomb to three significant figures, keeping in mind that an x component that points to the right is positive.
▸ View Available Hint(s)
Eoz =
Η ΑΣΦ
?
N/C
Submit
Part B
Now, assume that charge q2 is negative; q2 = -6 nC, as shown in (Figure 2). What is the x-component of the net electric field at the origin, point O?
Express your answer in newtons per coulomb to three significant figures, keeping in mind that an x component that points to the right is positive.
▸ View Available Hint(s)
Eoz=
Η ΑΣΦ
?
N/C
Chapter 21 Solutions
University Physics with Modern Physics, Volume 1 (Chs. 1-20) and Mastering Physics with Pearson eText & ValuePack Access Card (14th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.