EBK PHYSICS FOR SCIENTISTS AND ENGINEER
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
16th Edition
ISBN: 8220100546716
Author: Katz
Publisher: CENGAGE L
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 21, Problem 20PQ

From Table 21.1, the specific heat of milk is 3.93 × 103 J/ (kg ∙ K). and the specific heat of water is 4.19 × 103 J/(kg ∙ K). Suppose you wish to make a large mug (0.500 L) of hot chocolate. Each liquid is initially at 5.00°C. and you need to raise their temperature to 80.0°C. The density of milk is about 1.03 × 103 kg/m3, and the density of water is 1.00 × 103 kg/m3. a. How much heat must be transferred in each case? b. If you use a small electric hot plate that puts out 455 W, how long would it take to heat each liquid?

(a)

Expert Solution
Check Mark
To determine

The amount of heat transferred to milk and water.

Answer to Problem 20PQ

The amount of heat transferred to milk is Qm=1.52×105J and water is Qw=1.57×105J.

Explanation of Solution

Write the expression for heat energy transferred to the system.

  Q=mcΔT                                                                                                     (I)

Here, Q is the heat energy, m is the mass, c is the specific heat capacity of the object, and ΔT is the change in temperature.

Write the expression for mass of the milk, relating density and volume.

  mm=ρmVm                                                                                                    (II)

Here, mm is the mass of the milk, ρm is the density of milk, and Vm is the volume of the milk container.

Write the expression for mass of the water, relating density and volume.

  mw=ρwVw                                                                                                    (III)

Here, mw is the mass of the water, ρw is the density of water, and Vw is the volume of the water container.

Rearrange the equation (I) to calculate the heat required for milk.

  Qm=mmcmΔT                                                                                             (IV)

Here, Qm is the heat energy required for milk and cm is the specific heat capacity of milk.

Rearrange the equation (I) to calculate the heat required for water.

  Qw=mwcwΔT                                                                                              (V)

Here, Qw is the heat energy required for water and cw is the specific heat capacity of water.

Conclusion:

Substitute 1.03×103kg/m3 for ρm and 0.500L for Vm in equation (II) to find ρm.

  mm=(1.03×103kg/m3)(0.500L)(0.001m31.0L)=0.515kg

Substitute 1.00×103kg/m3 for ρw and 0.500L for Vw in equation (III) to find ρw.

  mw=(1.00×103kg/m3)(0.500L)(0.001m31.0L)=0.500kg

Substitute 0.515kg for mm, 3.93×103J/kgK for cm, and 80.0°C5.00°C for ΔT in equation (IV) to find Qm.

  Qm=(0.515kg)(3.93×103J/kgK)(80.0°C5.00°C)=(0.515kg)(3.93×103J/kgK)(75.0°C)=1.52×105J

Substitute 0.500kg for mw, 4.19×103J/kgK for cw, and 80.0°C5.00°C for ΔT in equation (V) to find Qw.

  Qw=(0.500kg)(4.19×103J/kgK)(80.0°C5.00°C)=(0.500kg)(4.19×103J/kgK)(75.0°C)=1.57×105J

Therefore, the amount of heat transferred to milk is Qm=1.52×105J and water is Qw=1.57×105J.

(b)

Expert Solution
Check Mark
To determine

The time taken to heat milk and water.

Answer to Problem 20PQ

The time taken to heat milk is 3.34×102s and water is 3.45×102s.

Explanation of Solution

Write the expression for power (energy per unit time).

  P=QΔt

Here, P is the power of the electric hot plate and Δt is the time taken to heat.

Rearrange the above equation for Δt.

  Δt=QP                                                                                                                  (VI)

Rearrange the equation for time taken to heat the milk.

  Δtm=QmP                                                                                                            (VII)

Here, Δtm is the time taken to heat the milk.

Rearrange the equation for time taken to heat the water.

  Δtw=QwP                                                                                                            (VIII)

Here, Δtw is the time taken to heat the water.

Conclusion:

Substitute 1.52×105J for Qm and 455W for P in equation (VII) to find Δtm.

  Δtm=1.52×105J455W=3.34×102s

Substitute 1.57×105J for Qw and 455W for P in equation (VIII) to find Δtw.

  Δtw=1.57×105J455W=3.45×102s

Therefore, the time taken to heat milk is 3.34×102s and water is 3.45×102s.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
ՍՈՈՒ XVirginia Western Community Coll x P Course Home X + astering.pearson.com/?courseld=13289599#/ Figure y (mm) x=0x = 0.0900 m All ✓ Correct For either the time for one full cycle is 0.040 s; this is the period. Part C - ON You are told that the two points x = 0 and x = 0.0900 m are within one wavelength of each other. If the wave is moving in the +x-direction, determine the wavelength. Express your answer to two significant figures and include the appropriate units. 0 t(s) λ = Value m 0.01 0.03 0.05 0.07 Copyright © 2025 Pearson Education Inc. All rights reserved. 日 F3 F4 F5 1775 % F6 F7 B F8 Submit Previous Answers Request Answer ? × Incorrect; Try Again; 3 attempts remaining | Terms of Use | Privacy Policy | Permissions | Contact Us | Cookie Settings 28°F Clear 4 9:23 PM 1/20/2025 F9 prt sc F10 home F11 end F12 insert delete 6 7 29 & * ( 8 9 0 t = back Ο
Part C Find the height yi from which the rock was launched. Express your answer in meters to three significant figures.                                     Learning Goal: To practice Problem-Solving Strategy 4.1 for projectile motion problems. A rock thrown with speed 12.0 m/s and launch angle 30.0 ∘ (above the horizontal) travels a horizontal distance of d = 19.0 m before hitting the ground. From what height was the rock thrown? Use the value g = 9.800 m/s2 for the free-fall acceleration.     PROBLEM-SOLVING STRATEGY 4.1 Projectile motion problems MODEL: Is it reasonable to ignore air resistance? If so, use the projectile motion model. VISUALIZE: Establish a coordinate system with the x-axis horizontal and the y-axis vertical. Define symbols and identify what the problem is trying to find. For a launch at angle θ, the initial velocity components are vix=v0cosθ and viy=v0sinθ. SOLVE: The acceleration is known: ax=0 and ay=−g. Thus, the problem becomes one of…
Phys 25

Chapter 21 Solutions

EBK PHYSICS FOR SCIENTISTS AND ENGINEER

Ch. 21 - Prob. 2PQCh. 21 - You extend an impromptu invitation to a friend for...Ch. 21 - Prob. 4PQCh. 21 - Prob. 5PQCh. 21 - Prob. 6PQCh. 21 - Prob. 7PQCh. 21 - Prob. 8PQCh. 21 - Prob. 9PQCh. 21 - Prob. 10PQCh. 21 - Prob. 11PQCh. 21 - Prob. 12PQCh. 21 - Prob. 13PQCh. 21 - Prob. 14PQCh. 21 - Prob. 15PQCh. 21 - Prob. 16PQCh. 21 - Prob. 17PQCh. 21 - Prob. 18PQCh. 21 - Prob. 19PQCh. 21 - From Table 21.1, the specific heat of milk is 3.93...Ch. 21 - Prob. 21PQCh. 21 - Prob. 22PQCh. 21 - An ideal gas is confined to a cylindrical...Ch. 21 - Prob. 24PQCh. 21 - You place frozen soup (T = 17C) in a microwave...Ch. 21 - A 25-g ice cube at 0.0C is heated. After it first...Ch. 21 - Prob. 27PQCh. 21 - Prob. 28PQCh. 21 - Prob. 29PQCh. 21 - Prob. 30PQCh. 21 - Consider the latent heat of fusion and the latent...Ch. 21 - Prob. 32PQCh. 21 - Prob. 33PQCh. 21 - A thermodynamic cycle is shown in Figure P21.34...Ch. 21 - Prob. 35PQCh. 21 - Figure P21.36 shows a cyclic thermodynamic process...Ch. 21 - Figure P21.37 shows a PV diagram for a gas that is...Ch. 21 - Prob. 38PQCh. 21 - Prob. 39PQCh. 21 - Prob. 40PQCh. 21 - Prob. 41PQCh. 21 - Prob. 42PQCh. 21 - Prob. 43PQCh. 21 - Prob. 44PQCh. 21 - Figure P21.45 shows a cyclic process ABCDA for...Ch. 21 - Prob. 46PQCh. 21 - Prob. 47PQCh. 21 - Prob. 48PQCh. 21 - Prob. 49PQCh. 21 - Prob. 50PQCh. 21 - Prob. 51PQCh. 21 - Prob. 52PQCh. 21 - Prob. 53PQCh. 21 - Prob. 54PQCh. 21 - Prob. 55PQCh. 21 - You extend an impromptu invitation to a friend for...Ch. 21 - Prob. 57PQCh. 21 - Prob. 58PQCh. 21 - A lake is covered with ice that is 2.0 cm thick....Ch. 21 - A concerned mother is dressing her child for play...Ch. 21 - Prob. 61PQCh. 21 - Prob. 62PQCh. 21 - Prob. 63PQCh. 21 - Prob. 64PQCh. 21 - Prob. 65PQCh. 21 - Prob. 66PQCh. 21 - Prob. 67PQCh. 21 - Prob. 68PQCh. 21 - Three 100.0-g ice cubes initially at 0C are added...Ch. 21 - Prob. 70PQCh. 21 - Prob. 71PQCh. 21 - Prob. 72PQCh. 21 - Prob. 73PQCh. 21 - Prob. 74PQCh. 21 - Prob. 75PQCh. 21 - Prob. 76PQCh. 21 - Prob. 77PQCh. 21 - Prob. 78PQCh. 21 - How much faster does a cup of tea cool by 1C when...Ch. 21 - The PV diagram in Figure P21.80 shows a set of...Ch. 21 - Prob. 81PQCh. 21 - Prob. 82PQCh. 21 - Prob. 83PQCh. 21 - Prob. 84PQCh. 21 - Prob. 85PQ
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Heat Transfer: Crash Course Engineering #14; Author: CrashCourse;https://www.youtube.com/watch?v=YK7G6l_K6sA;License: Standard YouTube License, CC-BY