EBK MINDTAP FOR HERMAN'S DELMAR'S STAND
EBK MINDTAP FOR HERMAN'S DELMAR'S STAND
7th Edition
ISBN: 9781337900614
Author: Herman
Publisher: VST
bartleby

Videos

Textbook Question
Book Icon
Chapter 21, Problem 1RQ

In a pure capacitive circuit, does the current lead or lag the voltage?

Expert Solution & Answer
Check Mark
To determine

Whether the current leads or lags the voltage in a pure capacitive circuit.

Answer to Problem 1RQ

In a pure capacitive circuit, the current leads the applied voltage by .

Explanation of Solution

Description:

EBK MINDTAP FOR HERMAN'S DELMAR'S STAND, Chapter 21, Problem 1RQ

As can be seen from the above figure,

  • At 0°, value for the applied voltage is zero, while the graph for current is at its positive peak.

  • At 90°, value for the applied voltage is at its positive peak , while the graph for current is at zero.

  • At 180°, value for the applied voltage is zero, while the graph for current reaches negative peak.

  • At 270°, value for the applied voltage reaches negative peak, while the graph for current rises towards zero from the negative peak.

From the above pattern it can be interpreted that current leads the applied voltage by in pure capacitive circuit.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A3 m long cantilever ABC is built-in at A, partially supported at B, 2 m from A, with a force of 10 kN and carries a vertical load of 20 kN at C. A uniformly distributed bad of 5 kN/m is also applied between A and B. Determine (a) the values of the vertical reaction and built-in moment at A and (b) the deflection of the free end C of the cantilever, Develop an expression for the slope of the beam at any position and hence plot a slope diagram. E = 208GN / (m ^ 2) and 1 = 24 * 10 ^ - 6 * m ^ 4
7. Consider the following feedback system with a proportional controller. K G(s) The plant transfer function is given by G(s) = 10 (s + 2)(s + 10) You want the system to have a damping ratio of 0.3 for unit step response. What is the value of K you need to choose to achieve the desired damping ratio? For that value of K, find the steady-state error for ramp input and settling time for step input. Hint: Sketch the root locus and find the point in the root locus that intersects with z = 0.3 line.
Create the PLC ladder logic diagram for the logic gate circuit displayed in Figure 7-35. The pilot light red (PLTR) output section has three inputs: PBR, PBG, and SW. Pushbutton red (PBR) and pushbutton green (PBG) are inputs to an XOR logic gate. The output of the XOR logic gate and the inverted switch SW) are inputs to a two-input AND logic gate. These inputs generate the pilot light red (PLTR) output. The two-input AND logic gate output is also fed into a two-input NAND logic PBR PBG SW TSW PLTR Figure 7-35. Logic gate circuit for Example 7-3. PLTW Goodheart-Willcox Publisher gate. The temperature switch (TSW) is the other input to the NAND logic gate. The output generated from the NAND logic gate is labeled pilot light white (PLTW).
Knowledge Booster
Background pattern image
Electrical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
02 - Sinusoidal AC Voltage Sources in Circuits, Part 1; Author: Math and Science;https://www.youtube.com/watch?v=8zMiIHVMfaw;License: Standard Youtube License