
PRACTICE PROBLEM 21.1
For each of the following complexes, determine the oxidation state of the metal and the total number of valence electrons it possesses.
(a)
(b)
(c)

Interpretation:
The oxidation state of a metal and the total number of valence electrons in metals in the complexes is to be determined.
Concept introduction:
The oxidation state of a metal in a complex is the charge on the metal that would be there even if all the anionic ligands and counter ions were removed.
The total number of valence electrons of a metal in a complex is obtained by the following formula:
Total number of valence electrons of metal in complex = dn + electrons donated by ligands
Here, dn is the d-electrons in the metal.
Answer to Problem 1PP
Solution:
(a)
Oxidation state of Rh is +1 and the total number of valence electrons in Rh is 15.
(b)
Oxidation state of Hg is +2 and the number of total valence electrons of Hg is 16.
(c)
Oxidation state of Ni is 0 and the number of total valence electrons of Ni is 16.
Explanation of Solution
Given information:
The oxidation state of rhodium is +1 in the complex. This is because Cl is the only ligand with a charge in the complex, phosphine triphenyl is a neutral ligand. The charge on the Cl ligand is −1. To satisfy this charge, rhodium carries a +1 charge.
Charge on rhodium is as follows:
x+(−1)=0
Here, x is the charge on rhodium and its value is as follows:
x=1
Now, d-electrons in rhodium are 8 and the number of electrons donated by ligands is 7. Each phosphine triphenyl donate two electrons and the chlorine atom donates one electron. So, according to the equation, the total number of valence electrons of the metal, in the complex are:
Total number of valence electrons of metal in complex = dn + electrons donated by ligands
Here, dn is the number of d-electrons in the metal.
For rhodium, the total number of valence electrons in the complex =8+7=15
Thus, the number of valence electrons in rhodium is 15.
Want to see more full solutions like this?
Chapter 21 Solutions
Organic Chemistry, 12e Study Guide/Student Solutions Manual
Additional Science Textbook Solutions
Fundamentals of Physics Extended
Anatomy & Physiology (6th Edition)
Chemistry: A Molecular Approach (4th Edition)
Principles of Anatomy and Physiology
Campbell Essential Biology with Physiology (5th Edition)
Applications and Investigations in Earth Science (9th Edition)
- Synthesize 2-Ethyl-3-methyloxirane from dimethyl(propyl)sulfonium iodide using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardSynthesize 2-Hydroxy-2-phenylacetonitrile from phenylmethanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardSynthesize N-Methylcyclohexylamine from cyclohexanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forward
- Synthesize N-Methylcyclohexylamine from cyclohexanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardIf possible, please provide the formula of the compound 3,3-dimethylbut-2-enal.arrow_forwardSynthesize 1,4-dibromobenzene from acetanilide (N-phenylacetamide) using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forward
- Indicate the products obtained by mixing (3-oxo-3-phenylpropyl)triphenylphosphonium bromide with sodium hydride.arrow_forwardWe mix N-ethyl-2-hexanamine with excess methyl iodide and followed by heating with aqueous Ag2O. Indicate the major products obtained.arrow_forwardIndicate the products obtained by mixing acetophenone with iodine and NaOH.arrow_forward
- Indicate the products obtained by mixing 2-Propanone and ethyllithium and performing a subsequent acid hydrolysis.arrow_forwardIndicate the products obtained if (E)-2-butenal and 3-oxo-butanenitrile are mixed with sodium ethoxide in ethanol.arrow_forwardQuestion 3 (4 points), Draw a full arrow-pushing mechanism for the following reaction Please draw all structures clearly. Note that this intramolecular cyclization is analogous to the mechanism for halohydrin formation. COH Br + HBr Brarrow_forward
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
