Numerical Methods For Engineers, 7 Ed
Numerical Methods For Engineers, 7 Ed
7th Edition
ISBN: 9789352602131
Author: Canale Chapra
Publisher: MCGRAW-HILL HIGHER EDUCATION
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 21, Problem 1P

Evaluate the following integral:

0 π / 2 ( 6 + 3 cos x ) d x

(a) Analytically;

(b) Single application of the trapezoidal rule;

(c) Multiple-application trapezoidal rule, with n = 2 and 4;

(d) Single application of Simpson's 1/3 rule;

(e) Multiple-applicationSimpson's 1/3 rule, with n = 4 ;

(f) Single application of Simpson's3/8 rule; and

(g) Multiple-application Simpson's rule, with n = 5 .

For each of the numerical estimates (b) through (g), determine the percent relative error based on (a).

(a)

Expert Solution
Check Mark
To determine

To calculate: The value of the integral 0π2(6+3cosx)dx analytically.

Answer to Problem 1P

Solution:

The value of integral 0π2(6+3cosx)dx is 12.42478.

Explanation of Solution

Given:

The integral, 0π2(6+3cosx)dx

Formula used:

abf(x)dx=[F(x)]ab=F(b)F(a)

Here, F(x) is integrand of f(x).

Calculation:

Consider the integral,

0π2(6+3cosx)dx

The value of the integral is,

0π2(6+3cosx)dx=[6x+3sinx]0π2=[6(π2)+3sin(π2)6(0)3sin(0)]=(3π+3)=12.42478

Therefore, the value of the integral is 0π2(6+3cosx)dx=12.42478

(b)

Expert Solution
Check Mark
To determine

To calculate: The value of the integral 0π2(6+3cosx)dx with the help of single applicationversion of the Trapezoidal rule. Also find percent relative error.

Answer to Problem 1P

Solution:

The value of integral 0π2(6+3cosx)dx is 12.42478 with percent relative error 5.182%

Explanation of Solution

Given:

The integral, 0π2(6+3cosx)dx

The exact value of the integral 0π2(6+3cosx)dx=12.42478

Formula used:

Single application version of Trapezoidal rule: If I=abf(x)dx any integral, then the value of the integral is,

I=(ba)[f(a)+f(b)2].

Percentage error is,

% error=|exact value  numerical valueexact value|×100

Calculation:

Consider the integral,

I=0π2(6+3cosx)dx

Single application version of Trapezoidal rule is,

I=(ba)[f(a)+f(b)2]

And Percentage error=|exact value  numerical valueexact value|×100

The value of the integral is,

0π2(6+3cosx)dx=(π20)[(6+3cos(0))+(6+3cos(π2))2]=π2[9+62]=15π4=11.78097

And Percentage error is,

% error=|exact value  numerical valueexact value|×100=|12.4247811.7809712.42478|×100=5.182%

Therefore, the value of the integral is 0π2(6+3cosx)dx=11.78097 with percent relative error 5.182%.

(c)

Expert Solution
Check Mark
To determine

To calculate: The value of the integral 0π2(6+3cosx)dx with the help of multiple application version of the Trapezoidal rule, with n=2 and 4. Also find percent relative error.

Answer to Problem 1P

Solution:

0π2(6+3cosx)dx=12.26896 when n=2 with percent relative error 1.254% and 0π2(6+3cosx)dx=12.38613 when n=4 with percent relative error 0.311%.

Explanation of Solution

Given:

The integral, 0π2(6+3cosx)dx

The exact value of the integral 0π2(6+3cosx)dx=12.42478

Formula used:

Multiple application version of Trapezoidal rule: If I=abf(x)dx any integral, then the value of the integral is

I=h2[f(x0)+2i=1n1f(xi)+f(xn)].

Here, h=ban is the step size and xi+1=xi+h ; i=0,1,2,...

Percentage error is,

% error=|exact value  numerical valueexact value|×100

Calculation:

Consider the integral,

I=0π2(6+3cosx)dx

Here, the function is,

f(x)=6+3cosx

Multiple application version of Trapezoidal rule is,

I=h2[f(x0)+2i=1n1f(xi)+f(xn)]

When n=2,

h=π202=π4

Here, x0=0

The value of the function at x0=0 is,

f(0)=6+3cos(0)=6+3=9

The value of x1 is,

x1=x0+h=0+π4=π4

The value of the function at x1=π4 is,

f(π4)=6+3cos(π4)=6+32=8.12132

The value of x2 is,

x2=x1+h=π4+π4=π2

The value of the function at x2=π2,

f(π2)=6+3cos(π2)=6

Thus, the value of the integral is,

0π2(6+3cosx)dx=h2[f(x0)+2f(x1)+f(x2)]=π8[9+2(8.12132)+6]=12.26896

Percentage error is,

% error=|exact value  numerical valueexact value|×100=|12.4247812.2689612.42478|×100=1.254%

Multiple application version of Trapezoidal rule is,

I=h2[f(x0)+2i=1n1f(xi)+f(xn)]

When n=4,

h=π204=π8

Here, x0=0

The value of the function at x0=0 is,

f(0)=6+3cos(0)=6+3=9

The value of x1 is,

x1=x0+h=0+π8=π8

The value of the function at x1=π8 is,

f(π8)=6+3cos(π8)=8.77164

The value of x2 is,

x2=x1+h=π8+π8=π4

The value of the function at x2=π4,

f(π4)=6+3cos(π4)=6+32=8.12132

The value of x3 is,

x3=x2+h=π4+π8=3π8

The value of the function at x3=3π8 is,

f(3π8)=6+3cos(3π8)=7.14805

The value of x4 is,

x4=x3+h=3π8+π8=π2

The value of the function at x4=π2 is,

f(π2)=6+3cos(π2)=6

Thus, the value of the integral is,

0π2(6+3cosx)dx=h2[f(x0)+2(f(x1)+f(x2)+f(x3))+f(x4)]=π16[9+2(8.77164+8.12132+7.14805)+6]=12.38613

Percentage error is,

% error=|exact value  numerical valueexact value|×100=|12.4247812.3861312.42478|×100=0.311%

Therefore, the value of the integral when n=2 is 0π2(6+3cosx)dx=12.26896 with percent relative error 1.254% and the value of the integral when n=4 is 0π2(6+3cosx)dx=12.38613 with percent relative error 0.311%.

(d)

Expert Solution
Check Mark
To determine

To calculate: The value of the integral 0π2(6+3cosx)dx with the help of single application version of the Simpson’s 13rd rule. Also find percent relative error.

Answer to Problem 1P

Solution:

0π2(6+3cosx)dx=12.43162 with percent relative error 0.055%.

Explanation of Solution

Given:

The integral, 0π2(6+3cosx)dx

The exact value of the integral 0π2(6+3cosx)dx=12.42478

Formula used:

Single application version of Simpson’s 13rd rule: If I=abf(x)dx any integral, then the value of the integral is

I=h3[f(x0)+4f(x1)+f(x2)].

Here, h=ban is the step size and xi+1=xi+h ; i=0,1,2,...

Percentage error is,

% error=|exact value  numerical valueexact value|×100

Calculation:

Consider the integral,

I=0π2(6+3cosx)dx

Here, the function is,

f(x)=6+3cosx

Single application version of Simpson’s 13rd rule is,

I=h3[f(x0)+4f(x1)+f(x2)].

Here, n=2,

h=π202=π4

Here, x0=0

The value of the function at x0=0 is,

f(0)=6+3cos(0)=6+3=9

The value of x1 is,

x1=x0+h=0+π4=π4

The value of the function at x1=π4 is,

f(π4)=6+3cos(π4)=6+32=8.12132

The value of x2 is,

x2=x1+h=π4+π4=π2

The value of the function at x2=π2,

f(π2)=6+3cos(π2)=6

Thus, the value of the integral is,

0π2(6+3cosx)dx=h3[f(x0)+4f(x1)+f(x2)]=π12[9+4(8.12132)+6]=12.43162

Percentage error is,

% error=|exact value  numerical valueexact value|×100=|12.4247812.4316212.42478|×100=0.055%

Therefore, the value of the integral when n=2 is 0π2(6+3cosx)dx=12.43162 with percent relative error 0.055%.

(e)

Expert Solution
Check Mark
To determine

To calculate: The value of the integral 0π2(6+3cosx)dx with the help of multiple application version of the Simpson’s 13rd rule. Also find percent relative error.

Answer to Problem 1P

Solution:

0π2(6+3cosx)dx=12.42518 with percent relative error 0.0032%.

Explanation of Solution

Given:

The integral, 0π2(6+3cosx)dx

The exact value of the integral 0π2(6+3cosx)dx=12.42478

Formula used:

Multiple application version of Simpson’s 13rd rule: If I=abf(x)dx any integral, then the value of the integral is

I=h3[f(x0)+4i=1,3,5,...n1f(xi)+2j=2,4,6,...n2f(xj)+f(xn)].

Here, h=ban is the step size and xi+1=xi+h ; i=0,1,2,...

Percentage error is,

% error=|exact value  numerical valueexact value|×100

Calculation:

Consider the integral,

I=0π2(6+3cosx)dx

Here, the function is,

f(x)=6+3cosx

Multiple application version of Simpson’s 13rd rule is,

I=h3[f(x0)+4i=1,3,5,...n1f(xi)+2j=2,4,6,...n2f(xj)+f(xn)].

When n=4,

h=π204=π8

Here, x0=0

The value of the function at x0=0 is,

f(0)=6+3cos(0)=6+3=9

The value of x1 is,

x1=x0+h=0+π8=π8

The value of the function at x1=π8 is,

f(π8)=6+3cos(π8)=8.77164

The value of x2 is,

x2=x1+h=π8+π8=π4

The value of the function at x2=π4,

f(π4)=6+3cos(π4)=6+32=8.12132

The value of x3 is,

x3=x2+h=π4+π8=3π8

The value of the function at x3=3π8 is,

f(3π8)=6+3cos(3π8)=7.14805

The value of x4 is,

x4=x3+h=3π8+π8=π2

The value of the function at x4=π2 is,

f(π2)=6+3cos(π2)=6

Thus, the value of the integral is,

0π2(6+3cosx)dx=h3[f(x0)+4(f(x1)+f(x3))+2f(x2)+f(x4)]=π24[9+4(8.77164+7.14805)+2(8.12132)+6]=12.42518

Percentage error is,

% error=|exact value  numerical valueexact value|×100=|12.4247812.4251812.42478|×100=0.0032%

Therefore, the value of the integral when n=4 is 0π2(6+3cosx)dx=12.42518 with percent relative error 0.0032%.

(f)

Expert Solution
Check Mark
To determine

To calculate: The value of the integral 0π2(6+3cosx)dx with the help of single applicationversion of the Simpson’s 38th rule. Also find percent relative error.

Answer to Problem 1P

Solution:

0π2(6+3cosx)dx=12.42779 with percent relative error 0.024%.

Explanation of Solution

Given:

The integral, 0π2(6+3cosx)dx

The exact value of the integral 0π2(6+3cosx)dx=12.42478

Formula used:

Single application version of Simpson’s 38th rule: If I=abf(x)dx any integral, then the value of the integral is

I=3h8[f(x0)+3(f(x1)+f(x2))+f(x3)].

Here, h=ban is the step size and xi+1=xi+h ; i=0,1,2,...

Percentage error is,

% error=|exact value  numerical valueexact value|×100

Calculation:

Consider the integral,

I=0π2(6+3cosx)dx

Here, the function is,

f(x)=6+3cosx

Single application version of Simpson’s 38th rule is,

I=3h8[f(x0)+3(f(x1)+f(x2))+f(x3)].

Here, n=3,

h=π203=π6

Here, x0=0

The value of the function at x0=0 is,

f(0)=6+3cos(0)=6+3=9

The value of x1 is,

x1=x0+h=0+π6=π6

The value of the function at x1=π6 is,

f(π6)=6+3cos(π6)=6+332=8.598076

The value of x2 is,

x2=x1+h=π6+π6=π3

The value of the function at x2=π3,

f(π3)=6+3cos(π3)=6+32=7.5

The value of x3 is,

x3=x2+h=π3+π6=π2

The value of the function at x3=π2,

f(π2)=6+3cos(π2)=6

Thus, the value of the integral is,

0π2(6+3cosx)dx=3h8[f(x0)+3(f(x1)+f(x2))+f(x3)]=π16[9+3(8.598076+7.5)+6]=12.42779

Percentage error is,

% error=|exact value  numerical valueexact value|×100=|12.4247812.4277912.42478|×100=0.024%

Therefore, the value of the integral when n=3 is 0π2(6+3cosx)dx=12.42779 with percent relative error 0.024%.

(g)

Expert Solution
Check Mark
To determine

To calculate: The value of the integral 0π2(6+3cosx)dx with the help of multiple application version of the Simpson’s 38th rule with n=5. Also find percent relative error.

Answer to Problem 1P

Solution:

0π2(6+3cosx)dx=12.42503 with percent relative error 0.002%.

Explanation of Solution

Given:

The integral, 0π2(6+3cosx)dx

The exact value of the integral 0π2(6+3cosx)dx=12.42478

Formula used:

Multiple application version of Simpson’s 38th rule for n=5: If I=abf(x)dx any integral, then the value of the integral is

I=Simpson's 13rd rule for first two segment + Simpson's 38th rule for last three segment.

Single application version of Simpson’s 13rd rule: If I=abf(x)dx any integral, then the value of the integral is

I=h3[f(x0)+4f(x1)+f(x2)].

Single application of Simpson’s 38th rule: If I=abf(x)dx any integral, then the value of the integral is

I=3h8[f(x0)+3(f(x1)+f(x2))+f(x3)].

Here, h=ban is the step size and xi+1=xi+h ; i=0,1,2,...

Percentage error is,

% error=|exact value  numerical valueexact value|×100

Calculation:

Consider the integral,

I=0π2(6+3cosx)dx

Here, the function is,

f(x)=6+3cosx

Multiple application version of Simpson’s 38th rule for n=5: If I=abf(x)dx any integral, then the value of the integral is

I=Simpson's 13rd rule for first two segment + Simpson's 38th rule for last three segment.

Here, n=5,

h=π205=π10

Here, x0=0

The value of the function at x0=0 is,

f(0)=6+3cos(0)=6+3=9

The value of x1 is,

x1=x0+h=0+π10=π10

The value of the function at x1=π10 is,

f(π10)=6+3cos(π10)=8.85317

The value of x2 is,

x2=x1+h=π10+π10=π5

The value of the function at x2=π5,

f(π5)=6+3cos(π5)=8.42705

The value of x3 is,

x3=x2+h=π5+π10=3π10

The value of the function at x3=3π10,

f(3π10)=6+3cos(3π10)=7.763356

The value of x4 is,

x4=x3+h=3π10+π10=2π5

The value of the function at x4=2π5,

f(2π5)=6+3cos(2π5)=6.92705

The value of x5 is,

x5=x4+h=2π5+π10=π2

The value of the function at x5=π2,

f(π2)=6+3cos(π2)=6

Thus, the value of the integral is,

0π2(6+3cosx)dx=h3[f(x0)+4f(x1)+f(x2)]+3h8[f(x2)+3(f(x3)+f(x4))+f(x5)]=π30[9+4(8.85317)+8.42705]+3π80[8.42705+3(7.763356+6.92705)+6]=5.533364+6.891665=12.42503

Percentage error is,

% error=|exact value  numerical valueexact value|×100=|12.4247812.4250312.42478|×100=0.002%

Therefore, the value of the integral when n=3 is 0π2(6+3cosx)dx=12.42503 with percent relative error 0.002%.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
dny dn-1y dn-1u dn-24 +a1 + + Any = bi +b₂- + +bnu. dtn dtn-1 dtn-1 dtn-2 a) Let be a root of the characteristic equation 1 sn+a1sn- + +an = : 0. Show that if u(t) = 0, the differential equation has the solution y(t) = e\t. b) Let к be a zero of the polynomial b(s) = b₁s-1+b2sn−2+ Show that if the input is u(t) equation that is identically zero. = .. +bn. ekt, then there is a solution to the differential
B 60 ft WAB AB 30% : The crane's telescopic boom rotates with the angular velocity w = 0.06 rad/s and angular acceleration a = 0.07 rad/s². At the same instant, the boom is extending with a constant speed of 0.8 ft/s, measured relative to the boom. Determine the magnitude of the acceleration of point B at this instant.
The motion of peg P is constrained by the lemniscate curved slot in OB and by the slotted arm OA. (Figure 1) If OA rotates counterclockwise with a constant angular velocity of 0 = 3 rad/s, determine the magnitude of the velocity of peg P at 0 = 30°. Express your answer to three significant figures and include the appropriate units. Determine the magnitude of the acceleration of peg P at 0 = 30°. Express your answer to three significant figures and include the appropriate units. 0 (4 cos 2 0)m² B A
Knowledge Booster
Background pattern image
Advanced Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Numerical Integration Introduction l Trapezoidal Rule Simpson's 1/3 Rule l Simpson's 3/8 l GATE 2021; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=zadUB3NwFtQ;License: Standard YouTube License, CC-BY