
Concept explainers
Evaluate the following
(a) Analytically;
(b) Single application of the trapezoidal rule;
(c) Multiple-application trapezoidal rule, with
(d) Single application of Simpson's 1/3 rule;
(e) Multiple-applicationSimpson's 1/3 rule, with
(f) Single application of Simpson's3/8 rule; and
(g) Multiple-application Simpson's rule, with
For each of the numerical estimates (b) through (g), determine the percent relative error based on (a).
(a)

To calculate: The value of the integral
Answer to Problem 1P
Solution:
The value of integral
Explanation of Solution
Given:
The integral,
Formula used:
Here,
Calculation:
Consider the integral,
The value of the integral is,
Therefore, the value of the integral is
(b)

To calculate: The value of the integral
Answer to Problem 1P
Solution:
The value of integral
Explanation of Solution
Given:
The integral,
The exact value of the integral
Formula used:
Single application version of Trapezoidal rule: If
Percentage error is,
Calculation:
Consider the integral,
Single application version of Trapezoidal rule is,
And
The value of the integral is,
And Percentage error is,
Therefore, the value of the integral is
(c)

To calculate: The value of the integral
Answer to Problem 1P
Solution:
Explanation of Solution
Given:
The integral,
The exact value of the integral
Formula used:
Multiple application version of Trapezoidal rule: If
Here,
Percentage error is,
Calculation:
Consider the integral,
Here, the function is,
Multiple application version of Trapezoidal rule is,
When
Here,
The value of the function at
The value of
The value of the function at
The value of
The value of the function at
Thus, the value of the integral is,
Percentage error is,
Multiple application version of Trapezoidal rule is,
When
Here,
The value of the function at
The value of
The value of the function at
The value of
The value of the function at
The value of
The value of the function at
The value of
The value of the function at
Thus, the value of the integral is,
Percentage error is,
Therefore, the value of the integral when
(d)

To calculate: The value of the integral
Answer to Problem 1P
Solution:
Explanation of Solution
Given:
The integral,
The exact value of the integral
Formula used:
Single application version of Simpson’s
Here,
Percentage error is,
Calculation:
Consider the integral,
Here, the function is,
Single application version of Simpson’s
Here,
Here,
The value of the function at
The value of
The value of the function at
The value of
The value of the function at
Thus, the value of the integral is,
Percentage error is,
Therefore, the value of the integral when
(e)

To calculate: The value of the integral
Answer to Problem 1P
Solution:
Explanation of Solution
Given:
The integral,
The exact value of the integral
Formula used:
Multiple application version of Simpson’s
Here,
Percentage error is,
Calculation:
Consider the integral,
Here, the function is,
Multiple application version of Simpson’s
When
Here,
The value of the function at
The value of
The value of the function at
The value of
The value of the function at
The value of
The value of the function at
The value of
The value of the function at
Thus, the value of the integral is,
Percentage error is,
Therefore, the value of the integral when
(f)

To calculate: The value of the integral
Answer to Problem 1P
Solution:
Explanation of Solution
Given:
The integral,
The exact value of the integral
Formula used:
Single application version of Simpson’s
Here,
Percentage error is,
Calculation:
Consider the integral,
Here, the function is,
Single application version of Simpson’s
Here,
Here,
The value of the function at
The value of
The value of the function at
The value of
The value of the function at
The value of
The value of the function at
Thus, the value of the integral is,
Percentage error is,
Therefore, the value of the integral when
(g)

To calculate: The value of the integral
Answer to Problem 1P
Solution:
Explanation of Solution
Given:
The integral,
The exact value of the integral
Formula used:
Multiple application version of Simpson’s
Single application version of Simpson’s
Single application of Simpson’s
Here,
Percentage error is,
Calculation:
Consider the integral,
Here, the function is,
Multiple application version of Simpson’s
Here,
Here,
The value of the function at
The value of
The value of the function at
The value of
The value of the function at
The value of
The value of the function at
The value of
The value of the function at
The value of
The value of the function at
Thus, the value of the integral is,
Percentage error is,
Therefore, the value of the integral when
Want to see more full solutions like this?
Chapter 21 Solutions
Numerical Methods for Engineers
- Q4*) Find the extremals y, z of the the functional 1 = √² (2yz — 2z² + y² — z¹²) dx, - - with y(0) = 0, y(1) = 1, z(0) = 0, z(1) = 0.arrow_forwardlet h0, h1, h2,..., hn,....be the sequence defined by hn = (n C 2), (n choose 2). (n>=0). Determine the generating function for the sequence.arrow_forwardLet v₁ = (2,-3,7,8), v2 = (3, 10, -6, 14), v3 = (0, 19, -2, 16), and v₁ = (9, -2, 1, 10). Is the set {V1, V2, V3, V4} a basis for R4? Of the two sets S = {(3x-5y, 4x + 7y, x+9y): x, y = R} and T = {2x-3y+z, -7x-3y²+z, 4x + 3z): x, y, z = R} which is a subspace of R3? (S, T, both, neither) Justify.arrow_forward
- not use ai pleasearrow_forwardnot use ai pleasearrow_forwardplease answer the questions below ands provide the required codes in PYTHON. alsp provide explanation of how the codes were executed. Also make sure you provide codes that will be able to run even with different parameters as long as the output will be the same with any parameters given. these questions are not graded. provide accurate codes pleasearrow_forward
- Could you please help me answer the follwoing questionsarrow_forwardWhat is Poisson probability? What are 3 characteristics of Poisson probability? What are 2 business applications of Poisson probability? Calculate the Poisson probability for the following data. x = 3, lambda = 2 x = 2, lambda = 1.5 x = 12, lambda = 10 For the problem statements starting from question 6 onward, exercise caution when entering data into Microsoft Excel. It's essential to carefully evaluate which value represents x and which represents λ. A call center receives an average of 3 calls per minute. What is the probability that exactly 5 calls are received in a given minute? On average, 4 patients arrive at an emergency room every hour. What is the probability that exactly 7 patients will arrive in the next hour? A production line produces an average of 2 defective items per hour. What is the probability that exactly 3 defective items will be produced in the next hour? An intersection experiences an average of 1.5 accidents per month. What is the probability that…arrow_forward(Nondiagonal Jordan form) Consider a linear system with a Jordan form that is non-diagonal. (a) Prove Proposition 6.3 by showing that if the system contains a real eigenvalue 入 = O with a nontrivial Jordan block, then there exists an initial condition with a solution that grows in time. (b) Extend this argument to the case of complex eigenvalues with Reλ = 0 by using the block Jordan form Ji = 0 W 0 0 3000 1 0 0 1 0 ω 31 0arrow_forward
- Functions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage Learning
