Numerical Methods for Engineers
Numerical Methods for Engineers
7th Edition
ISBN: 9780073397924
Author: Steven C. Chapra Dr., Raymond P. Canale
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 21, Problem 1P

Evaluate the following integral:

0 π / 2 ( 6 + 3 cos x ) d x

(a) Analytically;

(b) Single application of the trapezoidal rule;

(c) Multiple-application trapezoidal rule, with n = 2 and 4;

(d) Single application of Simpson's 1/3 rule;

(e) Multiple-applicationSimpson's 1/3 rule, with n = 4 ;

(f) Single application of Simpson's3/8 rule; and

(g) Multiple-application Simpson's rule, with n = 5 .

For each of the numerical estimates (b) through (g), determine the percent relative error based on (a).

(a)

Expert Solution
Check Mark
To determine

To calculate: The value of the integral 0π2(6+3cosx)dx analytically.

Answer to Problem 1P

Solution:

The value of integral 0π2(6+3cosx)dx is 12.42478.

Explanation of Solution

Given:

The integral, 0π2(6+3cosx)dx

Formula used:

abf(x)dx=[F(x)]ab=F(b)F(a)

Here, F(x) is integrand of f(x).

Calculation:

Consider the integral,

0π2(6+3cosx)dx

The value of the integral is,

0π2(6+3cosx)dx=[6x+3sinx]0π2=[6(π2)+3sin(π2)6(0)3sin(0)]=(3π+3)=12.42478

Therefore, the value of the integral is 0π2(6+3cosx)dx=12.42478

(b)

Expert Solution
Check Mark
To determine

To calculate: The value of the integral 0π2(6+3cosx)dx with the help of single applicationversion of the Trapezoidal rule. Also find percent relative error.

Answer to Problem 1P

Solution:

The value of integral 0π2(6+3cosx)dx is 12.42478 with percent relative error 5.182%

Explanation of Solution

Given:

The integral, 0π2(6+3cosx)dx

The exact value of the integral 0π2(6+3cosx)dx=12.42478

Formula used:

Single application version of Trapezoidal rule: If I=abf(x)dx any integral, then the value of the integral is,

I=(ba)[f(a)+f(b)2].

Percentage error is,

% error=|exact value  numerical valueexact value|×100

Calculation:

Consider the integral,

I=0π2(6+3cosx)dx

Single application version of Trapezoidal rule is,

I=(ba)[f(a)+f(b)2]

And Percentage error=|exact value  numerical valueexact value|×100

The value of the integral is,

0π2(6+3cosx)dx=(π20)[(6+3cos(0))+(6+3cos(π2))2]=π2[9+62]=15π4=11.78097

And Percentage error is,

% error=|exact value  numerical valueexact value|×100=|12.4247811.7809712.42478|×100=5.182%

Therefore, the value of the integral is 0π2(6+3cosx)dx=11.78097 with percent relative error 5.182%.

(c)

Expert Solution
Check Mark
To determine

To calculate: The value of the integral 0π2(6+3cosx)dx with the help of multiple application version of the Trapezoidal rule, with n=2 and 4. Also find percent relative error.

Answer to Problem 1P

Solution:

0π2(6+3cosx)dx=12.26896 when n=2 with percent relative error 1.254% and 0π2(6+3cosx)dx=12.38613 when n=4 with percent relative error 0.311%.

Explanation of Solution

Given:

The integral, 0π2(6+3cosx)dx

The exact value of the integral 0π2(6+3cosx)dx=12.42478

Formula used:

Multiple application version of Trapezoidal rule: If I=abf(x)dx any integral, then the value of the integral is

I=h2[f(x0)+2i=1n1f(xi)+f(xn)].

Here, h=ban is the step size and xi+1=xi+h ; i=0,1,2,...

Percentage error is,

% error=|exact value  numerical valueexact value|×100

Calculation:

Consider the integral,

I=0π2(6+3cosx)dx

Here, the function is,

f(x)=6+3cosx

Multiple application version of Trapezoidal rule is,

I=h2[f(x0)+2i=1n1f(xi)+f(xn)]

When n=2,

h=π202=π4

Here, x0=0

The value of the function at x0=0 is,

f(0)=6+3cos(0)=6+3=9

The value of x1 is,

x1=x0+h=0+π4=π4

The value of the function at x1=π4 is,

f(π4)=6+3cos(π4)=6+32=8.12132

The value of x2 is,

x2=x1+h=π4+π4=π2

The value of the function at x2=π2,

f(π2)=6+3cos(π2)=6

Thus, the value of the integral is,

0π2(6+3cosx)dx=h2[f(x0)+2f(x1)+f(x2)]=π8[9+2(8.12132)+6]=12.26896

Percentage error is,

% error=|exact value  numerical valueexact value|×100=|12.4247812.2689612.42478|×100=1.254%

Multiple application version of Trapezoidal rule is,

I=h2[f(x0)+2i=1n1f(xi)+f(xn)]

When n=4,

h=π204=π8

Here, x0=0

The value of the function at x0=0 is,

f(0)=6+3cos(0)=6+3=9

The value of x1 is,

x1=x0+h=0+π8=π8

The value of the function at x1=π8 is,

f(π8)=6+3cos(π8)=8.77164

The value of x2 is,

x2=x1+h=π8+π8=π4

The value of the function at x2=π4,

f(π4)=6+3cos(π4)=6+32=8.12132

The value of x3 is,

x3=x2+h=π4+π8=3π8

The value of the function at x3=3π8 is,

f(3π8)=6+3cos(3π8)=7.14805

The value of x4 is,

x4=x3+h=3π8+π8=π2

The value of the function at x4=π2 is,

f(π2)=6+3cos(π2)=6

Thus, the value of the integral is,

0π2(6+3cosx)dx=h2[f(x0)+2(f(x1)+f(x2)+f(x3))+f(x4)]=π16[9+2(8.77164+8.12132+7.14805)+6]=12.38613

Percentage error is,

% error=|exact value  numerical valueexact value|×100=|12.4247812.3861312.42478|×100=0.311%

Therefore, the value of the integral when n=2 is 0π2(6+3cosx)dx=12.26896 with percent relative error 1.254% and the value of the integral when n=4 is 0π2(6+3cosx)dx=12.38613 with percent relative error 0.311%.

(d)

Expert Solution
Check Mark
To determine

To calculate: The value of the integral 0π2(6+3cosx)dx with the help of single application version of the Simpson’s 13rd rule. Also find percent relative error.

Answer to Problem 1P

Solution:

0π2(6+3cosx)dx=12.43162 with percent relative error 0.055%.

Explanation of Solution

Given:

The integral, 0π2(6+3cosx)dx

The exact value of the integral 0π2(6+3cosx)dx=12.42478

Formula used:

Single application version of Simpson’s 13rd rule: If I=abf(x)dx any integral, then the value of the integral is

I=h3[f(x0)+4f(x1)+f(x2)].

Here, h=ban is the step size and xi+1=xi+h ; i=0,1,2,...

Percentage error is,

% error=|exact value  numerical valueexact value|×100

Calculation:

Consider the integral,

I=0π2(6+3cosx)dx

Here, the function is,

f(x)=6+3cosx

Single application version of Simpson’s 13rd rule is,

I=h3[f(x0)+4f(x1)+f(x2)].

Here, n=2,

h=π202=π4

Here, x0=0

The value of the function at x0=0 is,

f(0)=6+3cos(0)=6+3=9

The value of x1 is,

x1=x0+h=0+π4=π4

The value of the function at x1=π4 is,

f(π4)=6+3cos(π4)=6+32=8.12132

The value of x2 is,

x2=x1+h=π4+π4=π2

The value of the function at x2=π2,

f(π2)=6+3cos(π2)=6

Thus, the value of the integral is,

0π2(6+3cosx)dx=h3[f(x0)+4f(x1)+f(x2)]=π12[9+4(8.12132)+6]=12.43162

Percentage error is,

% error=|exact value  numerical valueexact value|×100=|12.4247812.4316212.42478|×100=0.055%

Therefore, the value of the integral when n=2 is 0π2(6+3cosx)dx=12.43162 with percent relative error 0.055%.

(e)

Expert Solution
Check Mark
To determine

To calculate: The value of the integral 0π2(6+3cosx)dx with the help of multiple application version of the Simpson’s 13rd rule. Also find percent relative error.

Answer to Problem 1P

Solution:

0π2(6+3cosx)dx=12.42518 with percent relative error 0.0032%.

Explanation of Solution

Given:

The integral, 0π2(6+3cosx)dx

The exact value of the integral 0π2(6+3cosx)dx=12.42478

Formula used:

Multiple application version of Simpson’s 13rd rule: If I=abf(x)dx any integral, then the value of the integral is

I=h3[f(x0)+4i=1,3,5,...n1f(xi)+2j=2,4,6,...n2f(xj)+f(xn)].

Here, h=ban is the step size and xi+1=xi+h ; i=0,1,2,...

Percentage error is,

% error=|exact value  numerical valueexact value|×100

Calculation:

Consider the integral,

I=0π2(6+3cosx)dx

Here, the function is,

f(x)=6+3cosx

Multiple application version of Simpson’s 13rd rule is,

I=h3[f(x0)+4i=1,3,5,...n1f(xi)+2j=2,4,6,...n2f(xj)+f(xn)].

When n=4,

h=π204=π8

Here, x0=0

The value of the function at x0=0 is,

f(0)=6+3cos(0)=6+3=9

The value of x1 is,

x1=x0+h=0+π8=π8

The value of the function at x1=π8 is,

f(π8)=6+3cos(π8)=8.77164

The value of x2 is,

x2=x1+h=π8+π8=π4

The value of the function at x2=π4,

f(π4)=6+3cos(π4)=6+32=8.12132

The value of x3 is,

x3=x2+h=π4+π8=3π8

The value of the function at x3=3π8 is,

f(3π8)=6+3cos(3π8)=7.14805

The value of x4 is,

x4=x3+h=3π8+π8=π2

The value of the function at x4=π2 is,

f(π2)=6+3cos(π2)=6

Thus, the value of the integral is,

0π2(6+3cosx)dx=h3[f(x0)+4(f(x1)+f(x3))+2f(x2)+f(x4)]=π24[9+4(8.77164+7.14805)+2(8.12132)+6]=12.42518

Percentage error is,

% error=|exact value  numerical valueexact value|×100=|12.4247812.4251812.42478|×100=0.0032%

Therefore, the value of the integral when n=4 is 0π2(6+3cosx)dx=12.42518 with percent relative error 0.0032%.

(f)

Expert Solution
Check Mark
To determine

To calculate: The value of the integral 0π2(6+3cosx)dx with the help of single applicationversion of the Simpson’s 38th rule. Also find percent relative error.

Answer to Problem 1P

Solution:

0π2(6+3cosx)dx=12.42779 with percent relative error 0.024%.

Explanation of Solution

Given:

The integral, 0π2(6+3cosx)dx

The exact value of the integral 0π2(6+3cosx)dx=12.42478

Formula used:

Single application version of Simpson’s 38th rule: If I=abf(x)dx any integral, then the value of the integral is

I=3h8[f(x0)+3(f(x1)+f(x2))+f(x3)].

Here, h=ban is the step size and xi+1=xi+h ; i=0,1,2,...

Percentage error is,

% error=|exact value  numerical valueexact value|×100

Calculation:

Consider the integral,

I=0π2(6+3cosx)dx

Here, the function is,

f(x)=6+3cosx

Single application version of Simpson’s 38th rule is,

I=3h8[f(x0)+3(f(x1)+f(x2))+f(x3)].

Here, n=3,

h=π203=π6

Here, x0=0

The value of the function at x0=0 is,

f(0)=6+3cos(0)=6+3=9

The value of x1 is,

x1=x0+h=0+π6=π6

The value of the function at x1=π6 is,

f(π6)=6+3cos(π6)=6+332=8.598076

The value of x2 is,

x2=x1+h=π6+π6=π3

The value of the function at x2=π3,

f(π3)=6+3cos(π3)=6+32=7.5

The value of x3 is,

x3=x2+h=π3+π6=π2

The value of the function at x3=π2,

f(π2)=6+3cos(π2)=6

Thus, the value of the integral is,

0π2(6+3cosx)dx=3h8[f(x0)+3(f(x1)+f(x2))+f(x3)]=π16[9+3(8.598076+7.5)+6]=12.42779

Percentage error is,

% error=|exact value  numerical valueexact value|×100=|12.4247812.4277912.42478|×100=0.024%

Therefore, the value of the integral when n=3 is 0π2(6+3cosx)dx=12.42779 with percent relative error 0.024%.

(g)

Expert Solution
Check Mark
To determine

To calculate: The value of the integral 0π2(6+3cosx)dx with the help of multiple application version of the Simpson’s 38th rule with n=5. Also find percent relative error.

Answer to Problem 1P

Solution:

0π2(6+3cosx)dx=12.42503 with percent relative error 0.002%.

Explanation of Solution

Given:

The integral, 0π2(6+3cosx)dx

The exact value of the integral 0π2(6+3cosx)dx=12.42478

Formula used:

Multiple application version of Simpson’s 38th rule for n=5: If I=abf(x)dx any integral, then the value of the integral is

I=Simpson's 13rd rule for first two segment + Simpson's 38th rule for last three segment.

Single application version of Simpson’s 13rd rule: If I=abf(x)dx any integral, then the value of the integral is

I=h3[f(x0)+4f(x1)+f(x2)].

Single application of Simpson’s 38th rule: If I=abf(x)dx any integral, then the value of the integral is

I=3h8[f(x0)+3(f(x1)+f(x2))+f(x3)].

Here, h=ban is the step size and xi+1=xi+h ; i=0,1,2,...

Percentage error is,

% error=|exact value  numerical valueexact value|×100

Calculation:

Consider the integral,

I=0π2(6+3cosx)dx

Here, the function is,

f(x)=6+3cosx

Multiple application version of Simpson’s 38th rule for n=5: If I=abf(x)dx any integral, then the value of the integral is

I=Simpson's 13rd rule for first two segment + Simpson's 38th rule for last three segment.

Here, n=5,

h=π205=π10

Here, x0=0

The value of the function at x0=0 is,

f(0)=6+3cos(0)=6+3=9

The value of x1 is,

x1=x0+h=0+π10=π10

The value of the function at x1=π10 is,

f(π10)=6+3cos(π10)=8.85317

The value of x2 is,

x2=x1+h=π10+π10=π5

The value of the function at x2=π5,

f(π5)=6+3cos(π5)=8.42705

The value of x3 is,

x3=x2+h=π5+π10=3π10

The value of the function at x3=3π10,

f(3π10)=6+3cos(3π10)=7.763356

The value of x4 is,

x4=x3+h=3π10+π10=2π5

The value of the function at x4=2π5,

f(2π5)=6+3cos(2π5)=6.92705

The value of x5 is,

x5=x4+h=2π5+π10=π2

The value of the function at x5=π2,

f(π2)=6+3cos(π2)=6

Thus, the value of the integral is,

0π2(6+3cosx)dx=h3[f(x0)+4f(x1)+f(x2)]+3h8[f(x2)+3(f(x3)+f(x4))+f(x5)]=π30[9+4(8.85317)+8.42705]+3π80[8.42705+3(7.763356+6.92705)+6]=5.533364+6.891665=12.42503

Percentage error is,

% error=|exact value  numerical valueexact value|×100=|12.4247812.4250312.42478|×100=0.002%

Therefore, the value of the integral when n=3 is 0π2(6+3cosx)dx=12.42503 with percent relative error 0.002%.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
a) Rewrite A = √=x² + 4x + 21 in the form A V 6² - (x − a)². b) Use a trigonometric substitution to evaluate the indefinite integral. S/ dx You must show all steps.
/2 1. (a) Use the Wallis cosine formula to evaluate cos° xdx. 3 (b) Evaluate | 1 -dx by using properties of improper integrals. 1/3 (х-2)"3
evaluate the integral ∫√1/2x+2 dx/x^2 ∫ −?/(y+1)√y+1 ??
Knowledge Booster
Background pattern image
Advanced Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning
Numerical Integration Introduction l Trapezoidal Rule Simpson's 1/3 Rule l Simpson's 3/8 l GATE 2021; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=zadUB3NwFtQ;License: Standard YouTube License, CC-BY