Biochemistry
Biochemistry
9th Edition
ISBN: 9781319114671
Author: Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.
Publisher: W. H. Freeman
bartleby

Concept explainers

Question
Book Icon
Chapter 21, Problem 1P
Interpretation Introduction

Interpretation:

The three steps in glycogen degradation and the enzymes needed for the same should be determined.

Concept introduction:

The storage form of glucose is glycogen, a polymer of glucose having branches at every ten residues. It is stored in the skeletal muscle cells and liver within the granules of cytoplasm. Glycogen is used for regulation of blood glucose level by the liver and as a form of energy by the skeletal muscles.

Expert Solution & Answer
Check Mark

Answer to Problem 1P

The breakdown of glycogen is divided into three steps-(i) release of glucose from glycogen catalyzed by glycogen phosphorylase (ii) glycogen remodeling by enzymes transferase and a 1,6 glycosidase and (iii) conversion of glucose-1-phosphate to glucose-6-phosphate with the help of enzyme phosphoglucomutase.

Explanation of Solution

The breakdown of glycogen is divided into three steps-(i) release of glucose from glycogen (ii) glycogen remodeling and (iii) conversion of glucose-1-phosphate to glucose-6-phosphate.

The glucose-6-phosphate can enter the glycolytic pathway or can be transformed into glucose to be released in plasma of blood or enter pentose phosphate pathway. For the synthesis of glycogen from glucose, the monomers of glucose are required to be activated as UDP glucose or uridine diphosphate glucose.

In the first step of glycogen breakdown, phosphorolysis catalyzed by glycogen phosphorylase cleaves an a 1,4 glycosidic bond between a terminal glucose containing a free hydroxyl group on the fourth carbon and its adjacent glucose molecule using orthophosphate. The enzyme glycogen phosphorylase cannot cleave the a 1,6 glycosidic bond that form the branching points.

During the second stage, enzymes transferase and a 1,6 glycosidase helps in modification of glycogen for glycogen phosphorylase to continue the degradation process. A group of three glucose molecules are removed and transferred to another branch of glycogen. The remaining glucose molecule is removed by cleaving the a 1,6 glycosidic bond by the enzyme a 1,6 glycosidase.

In the final stage, conversion of glucose-1-phosphate to glucose-6-phosphate takes place with the help of an enzyme known as phosphoglucomutase.

Conclusion

The breakdown of glycogen is divided into three steps-(i) release of glucose from glycogen catalyzed by glycogen phosphorylase (ii) glycogen remodeling by enzymes transferase and a 1,6 glycosidase and (iii) conversion of glucose-1-phosphate to glucose-6-phosphate with the help of enzyme phosphoglucomutase.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Background Freezing isn't the only challenge in cryopreservation - thawing can be just as difficult. A microwave oven seems like a nice solution, since it deposits energy quickly and microwaves are non-ionizing radiation (they do not cause DNA mutation). However, water absorbs microwaves more effectively than ice does, meaning that the portion of an organ that has already melted will get warmer at a higher rate than the remaining ice – the opposite of what we want! - The transmission of radiation through a weakly absorbing material such as ice or water can be modeled by Beer's law, which assumes that the rate of absorption at a depth x is proportional to the local radiation intensity I(x) times an absorption coefficient, which is often written as μ or a or just µ). Noting that absorption decreases the intensity, we can write a differential equation a Solving the differential equation with the boundary condition on the surface being gives the relationship For a standard microwave oven…
3. Dry air is inhaled at a rate of 10 liter/min through a trachea with a diameter of 20 mm and a length of 125 mm. The inner surface of the trachea is at a normal body temperature of 37°C and may be assumed to be saturated with water. a. Assuming steady, fully developed flow in the trachea, estimate the mass transfer convection coefficient. b. Estimate the daily water loss (liter/day) associated with evaporation in the trachea.
1. Conceptual questions a. What dimensionless group describes the relative importance of convection versus diffusion. Explain the physical basis of this group. b. For mass transfer from a flowing fluid to a reactive surface, explain how convection increases the flux of solute to the surface.
Knowledge Booster
Background pattern image
Biochemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biochemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Biochemistry
    Biochemistry
    ISBN:9781305577206
    Author:Reginald H. Garrett, Charles M. Grisham
    Publisher:Cengage Learning
    Text book image
    Human Heredity: Principles and Issues (MindTap Co...
    Biology
    ISBN:9781305251052
    Author:Michael Cummings
    Publisher:Cengage Learning
    Text book image
    Biology 2e
    Biology
    ISBN:9781947172517
    Author:Matthew Douglas, Jung Choi, Mary Ann Clark
    Publisher:OpenStax
  • Text book image
    Biochemistry
    Biochemistry
    ISBN:9781305961135
    Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougal
    Publisher:Cengage Learning
    Text book image
    Anatomy & Physiology
    Biology
    ISBN:9781938168130
    Author:Kelly A. Young, James A. Wise, Peter DeSaix, Dean H. Kruse, Brandon Poe, Eddie Johnson, Jody E. Johnson, Oksana Korol, J. Gordon Betts, Mark Womble
    Publisher:OpenStax College
Text book image
Biochemistry
Biochemistry
ISBN:9781305577206
Author:Reginald H. Garrett, Charles M. Grisham
Publisher:Cengage Learning
Text book image
Human Heredity: Principles and Issues (MindTap Co...
Biology
ISBN:9781305251052
Author:Michael Cummings
Publisher:Cengage Learning
Text book image
Biology 2e
Biology
ISBN:9781947172517
Author:Matthew Douglas, Jung Choi, Mary Ann Clark
Publisher:OpenStax
Text book image
Biochemistry
Biochemistry
ISBN:9781305961135
Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougal
Publisher:Cengage Learning
Text book image
Anatomy & Physiology
Biology
ISBN:9781938168130
Author:Kelly A. Young, James A. Wise, Peter DeSaix, Dean H. Kruse, Brandon Poe, Eddie Johnson, Jody E. Johnson, Oksana Korol, J. Gordon Betts, Mark Womble
Publisher:OpenStax College