
Concept explainers
Ages of Presidents at Inauguration
The data represent the ages of our Presidents at the time they were first inaugurated.
1. Were the data obtained from a population or a sample? Explain your answer.
2. What was the age of the oldest President?
3. What was the age of the youngest President?
4. Construct a frequency distribution for the data. (Use your own judgment as to the number of classes and class size.)
5. Are there any peaks in the distribution?
6. Identify any possible outliers.
7. Write a brief summary of the nature of the data as shown in the frequency distribution.
(1)

To explain: Whether the given data is obtained from a population or a sample.
Answer to Problem 1AC
The given data is obtained from a population.
Explanation of Solution
Given info:
The below data shows the ages of our presidents at time they were first inaugurated.
57 | 61 | 57 | 57 | 58 | 57 | 61 | 54 | 68 |
51 | 49 | 64 | 50 | 48 | 65 | 52 | 56 | 46 |
54 | 49 | 51 | 47 | 55 | 55 | 54 | 42 | 51 |
56 | 55 | 51 | 54 | 51 | 60 | 62 | 43 | 55 |
56 | 61 | 52 | 69 | 64 | 46 | 54 | 47 |
Justification:
The population is the universal set under study and the sample is the small subset of the population.
Since, the data represent the ages of all the presidents at the time they were first inaugurate; therefore all the presidents are included under study.
Therefore, the given data is obtained from a population.
(2)

The age of the oldest president.
Answer to Problem 1AC
The age of the oldest president is 69 years.
Explanation of Solution
Given info:
The below data shows the ages of our presidents at time they were first inaugurated.
57 | 61 | 57 | 57 | 58 | 57 | 61 | 54 | 68 |
51 | 49 | 64 | 50 | 48 | 65 | 52 | 56 | 46 |
54 | 49 | 51 | 47 | 55 | 55 | 54 | 42 | 51 |
56 | 55 | 51 | 54 | 51 | 60 | 62 | 43 | 55 |
56 | 61 | 52 | 69 | 64 | 46 | 54 | 47 |
Calculation:
The given data represents the ages of our presidents at time they were first inaugurated. The maximum number in the given data represents the age of oldest president and the minimum number in the given data represents the age of the youngest president.
From the given data it is noticed that the maximum number in the data is 69, it means the age of the present is 69 years at time he was first inaugurated.
Therefore, the age of the oldest president is 69 years.
(3)

The age of the youngest president.
Answer to Problem 1AC
The age of the youngest president is 42 years.
Explanation of Solution
Given info:
The below data shows the ages of our presidents at time they were first inaugurated.
57 | 61 | 57 | 57 | 58 | 57 | 61 | 54 | 68 |
51 | 49 | 64 | 50 | 48 | 65 | 52 | 56 | 46 |
54 | 49 | 51 | 47 | 55 | 55 | 54 | 42 | 51 |
56 | 55 | 51 | 54 | 51 | 60 | 62 | 43 | 55 |
56 | 61 | 52 | 69 | 64 | 46 | 54 | 47 |
Calculation:
The given data represents the ages of our presidents at time they were first inaugurated. The maximum number in the given data represents the age of oldest president and the minimum number in the given data represents the age of the youngest president.
From the given data it is noticed that the minimum number in the data is 42, it means the age of the present is 42 years at time he was first inaugurated
Therefore, the age of the youngest president is 42 years.
(4)

A frequency distribution for the given data.
Answer to Problem 1AC
The frequency distribution with 7 classes is given in following table:
Class limits | Frequency |
42-45 | 2 |
46-49 | 7 |
50-53 | 8 |
54-57 | 16 |
58-61 | 5 |
62-65 | 4 |
66-69 | 2 |
Explanation of Solution
Given info:
The below shows the ages of our presidents at time they were first inaugurated.
57 | 61 | 57 | 57 | 58 | 57 | 61 | 54 | 68 |
51 | 49 | 64 | 50 | 48 | 65 | 52 | 56 | 46 |
54 | 49 | 51 | 47 | 55 | 55 | 54 | 42 | 51 |
56 | 55 | 51 | 54 | 51 | 60 | 62 | 43 | 55 |
56 | 61 | 52 | 69 | 64 | 46 | 54 | 47 |
Calculation:
Assume that the number of classes for the frequency distribution is 7. The answer will vary according to the number of classes.
The highest value is 69 and the lowest value is 42.
The range is the difference of highest value and the lowest value.
The range is 27.
The class width is the ratio of range and classes.
The class width is 4.
Add the width to the smallest term of the data to get the lower limit of the next class and add up to 7 classes.
So the lower limits of all the 7 classes are, 42,46,50,54,58,62,66.
Subtract 1 from the lower limit of the second class to get the upper limit of the first class, then add the width to each upper limit in every class to get all the upper limits.
The first class is 42-45, the second class is 46-49, the third class is 50-53, the fourth class is 54-57, the fifth class is 58-61, the sixth class is 62-65 and the seventh class is 66-69.
To find the class boundaries, subtract 0.5 from each lower class limit and add 0.5 to each upper class limit.
Tally the data and find the numerical frequencies from the tallies.
The frequency distribution is given below:
Class limits | Class boundaries | Tally | Frequency |
42-45 | 41.5 - 45.5 |
|
2 |
46-49 | 45.5 - 49.5 |
|
7 |
50-53 | 49.5 - 53.5 |
|
8 |
54-57 | 53.5 - 57.5 |
|
16 |
58-61 | 57.5 - 61.5 |
|
5 |
62-65 | 61.5 - 65.5 |
|
4 |
66-69 | 65.5 - 69.5 |
|
2 |
Therefore, the above table shows the frequency distribution for the given data.
(5)

The peak in the distribution.
Answer to Problem 1AC
The peak for the frequency distribution is 16 for the class
Explanation of Solution
Given info:
The below shows the ages of our presidents at time they were first inaugurated.
57 | 61 | 57 | 57 | 58 | 57 | 61 | 54 | 68 |
51 | 49 | 64 | 50 | 48 | 65 | 52 | 56 | 46 |
54 | 49 | 51 | 47 | 55 | 55 | 54 | 42 | 51 |
56 | 55 | 51 | 54 | 51 | 60 | 62 | 43 | 55 |
56 | 61 | 52 | 69 | 64 | 46 | 54 | 47 |
Calculation:
From part (4), the frequency distribution for the given data is shown below,
Class limits | Frequency |
42-45 | 2 |
46-49 | 7 |
50-53 | 8 |
54-57 | 16 |
58-61 | 5 |
62-65 | 4 |
66-69 | 2 |
From the above table, it is clearly noticed that the highest frequency is 16 for the class
Therefore, the peak for the frequency distribution is 16 for the class
(6)

The possible outliers for the frequency distribution of the given data.
Answer to Problem 1AC
The frequency distribution of the given data has no outliers.
Explanation of Solution
Given info:
The below shows the ages of our presidents at time they were first inaugurated.
57 | 61 | 57 | 57 | 58 | 57 | 61 | 54 | 68 |
51 | 49 | 64 | 50 | 48 | 65 | 52 | 56 | 46 |
54 | 49 | 51 | 47 | 55 | 55 | 54 | 42 | 51 |
56 | 55 | 51 | 54 | 51 | 60 | 62 | 43 | 55 |
56 | 61 | 52 | 69 | 64 | 46 | 54 | 47 |
Calculation:
Sort the given data in increasing order.
42 | 50 | 54 | 56 | 61 |
43 | 51 | 54 | 56 | 61 |
46 | 51 | 54 | 57 | 62 |
46 | 51 | 54 | 57 | 64 |
47 | 51 | 55 | 57 | 64 |
47 | 51 | 55 | 57 | 65 |
48 | 52 | 55 | 58 | 68 |
49 | 52 | 55 | 60 | 69 |
49 | 54 | 56 | 61 |
The total terms are 44, the value of n is 44 which is an even number.
Formula for first quartile is,
Substitute
Formula for third quartile is,
Substitute
The value of first quartile is 51 and value of third quartile is 57.5.
Formula for inter quartile range is,
Multiply the above value by 1.5.
Subtract the above value from
Add the value 9.75 in
If any value lies outside the interval from 41.25 to 67.25, then it is consider as outliers.
The frequency distribution of part (4), shows that there is no outliers.
Therefore, the frequency distribution of the given data has no outliers.
(7)

To explain: The nature of the given data.
Answer to Problem 1AC
The given data appears to be fairly symmetric, with center on 55 years of age.
Explanation of Solution
The below shows the ages of our presidents at time they were first inaugurated.
57 | 61 | 57 | 57 | 58 | 57 | 61 | 54 | 68 |
51 | 49 | 64 | 50 | 48 | 65 | 52 | 56 | 46 |
54 | 49 | 51 | 47 | 55 | 55 | 54 | 42 | 51 |
56 | 55 | 51 | 54 | 51 | 60 | 62 | 43 | 55 |
56 | 61 | 52 | 69 | 64 | 46 | 54 | 47 |
From the above table, it is noticed that the date is fairly symmetric, centering on 55 and the graph of the given data is bell shaped.
Therefore, the given data appears to be fairly symmetric, with center on 55 years of age.
Want to see more full solutions like this?
Chapter 2 Solutions
ELEMENTARY STATISTICS W/CONNECT >IP<
Additional Math Textbook Solutions
Math in Our World
Mathematics for the Trades: A Guided Approach (11th Edition) (What's New in Trade Math)
Elementary Statistics: Picturing the World (7th Edition)
Introductory Statistics
Elementary & Intermediate Algebra
APPLIED STAT.IN BUS.+ECONOMICS
- (a) Test the hypothesis. Consider the hypothesis test Ho = : against H₁o < 02. Suppose that the sample sizes aren₁ = 7 and n₂ = 13 and that $² = 22.4 and $22 = 28.2. Use α = 0.05. Ho is not ✓ rejected. 9-9 IV (b) Find a 95% confidence interval on of 102. Round your answer to two decimal places (e.g. 98.76).arrow_forwardLet us suppose we have some article reported on a study of potential sources of injury to equine veterinarians conducted at a university veterinary hospital. Forces on the hand were measured for several common activities that veterinarians engage in when examining or treating horses. We will consider the forces on the hands for two tasks, lifting and using ultrasound. Assume that both sample sizes are 6, the sample mean force for lifting was 6.2 pounds with standard deviation 1.5 pounds, and the sample mean force for using ultrasound was 6.4 pounds with standard deviation 0.3 pounds. Assume that the standard deviations are known. Suppose that you wanted to detect a true difference in mean force of 0.25 pounds on the hands for these two activities. Under the null hypothesis, 40 = 0. What level of type II error would you recommend here? Round your answer to four decimal places (e.g. 98.7654). Use a = 0.05. β = i What sample size would be required? Assume the sample sizes are to be equal.…arrow_forward= Consider the hypothesis test Ho: μ₁ = μ₂ against H₁ μ₁ μ2. Suppose that sample sizes are n₁ = 15 and n₂ = 15, that x1 = 4.7 and X2 = 7.8 and that s² = 4 and s² = 6.26. Assume that o and that the data are drawn from normal distributions. Use απ 0.05. (a) Test the hypothesis and find the P-value. (b) What is the power of the test in part (a) for a true difference in means of 3? (c) Assuming equal sample sizes, what sample size should be used to obtain ẞ = 0.05 if the true difference in means is - 2? Assume that α = 0.05. (a) The null hypothesis is 98.7654). rejected. The P-value is 0.0008 (b) The power is 0.94 . Round your answer to four decimal places (e.g. Round your answer to two decimal places (e.g. 98.76). (c) n₁ = n2 = 1 . Round your answer to the nearest integer.arrow_forward
- Consider the hypothesis test Ho: = 622 against H₁: 6 > 62. Suppose that the sample sizes are n₁ = 20 and n₂ = 8, and that = 4.5; s=2.3. Use a = 0.01. (a) Test the hypothesis. Round your answers to two decimal places (e.g. 98.76). The test statistic is fo = i The critical value is f = Conclusion: i the null hypothesis at a = 0.01. (b) Construct the confidence interval on 02/022 which can be used to test the hypothesis: (Round your answer to two decimal places (e.g. 98.76).) iarrow_forward2011 listing by carmax of the ages and prices of various corollas in a ceratin regionarrow_forwardس 11/ أ . اذا كانت 1 + x) = 2 x 3 + 2 x 2 + x) هي متعددة حدود محسوبة باستخدام طريقة الفروقات المنتهية (finite differences) من جدول البيانات التالي للدالة (f(x . احسب قيمة . ( 2 درجة ) xi k=0 k=1 k=2 k=3 0 3 1 2 2 2 3 αarrow_forward
- 1. Differentiate between discrete and continuous random variables, providing examples for each type. 2. Consider a discrete random variable representing the number of patients visiting a clinic each day. The probabilities for the number of visits are as follows: 0 visits: P(0) = 0.2 1 visit: P(1) = 0.3 2 visits: P(2) = 0.5 Using this information, calculate the expected value (mean) of the number of patient visits per day. Show all your workings clearly. Rubric to follow Definition of Random variables ( clearly and accurately differentiate between discrete and continuous random variables with appropriate examples for each) Identification of discrete random variable (correctly identifies "number of patient visits" as a discrete random variable and explains reasoning clearly.) Calculation of probabilities (uses the probabilities correctly in the calculation, showing all steps clearly and logically) Expected value calculation (calculate the expected value (mean)…arrow_forwardif the b coloumn of a z table disappeared what would be used to determine b column probabilitiesarrow_forwardConstruct a model of population flow between metropolitan and nonmetropolitan areas of a given country, given that their respective populations in 2015 were 263 million and 45 million. The probabilities are given by the following matrix. (from) (to) metro nonmetro 0.99 0.02 metro 0.01 0.98 nonmetro Predict the population distributions of metropolitan and nonmetropolitan areas for the years 2016 through 2020 (in millions, to four decimal places). (Let x, through x5 represent the years 2016 through 2020, respectively.) x₁ = x2 X3 261.27 46.73 11 259.59 48.41 11 257.96 50.04 11 256.39 51.61 11 tarrow_forward
- If the average price of a new one family home is $246,300 with a standard deviation of $15,000 find the minimum and maximum prices of the houses that a contractor will build to satisfy 88% of the market valuearrow_forward21. ANALYSIS OF LAST DIGITS Heights of statistics students were obtained by the author as part of an experiment conducted for class. The last digits of those heights are listed below. Construct a frequency distribution with 10 classes. Based on the distribution, do the heights appear to be reported or actually measured? Does there appear to be a gap in the frequencies and, if so, how might that gap be explained? What do you know about the accuracy of the results? 3 4 555 0 0 0 0 0 0 0 0 0 1 1 23 3 5 5 5 5 5 5 5 5 5 5 5 5 6 6 8 8 8 9arrow_forwardA side view of a recycling bin lid is diagramed below where two panels come together at a right angle. 45 in 24 in Width? — Given this information, how wide is the recycling bin in inches?arrow_forward
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin Harcourt


