College Physics For Ap® Courses
16th Edition
ISBN: 9781938168932
Author: Gregg Wolfe, Irina Lyublinskaya, Douglas Ingram
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 21, Problem 19PE
(a) Find the terminal voltage of a 12.0-V motorcycle battery having a 0.600- Ω internal resistance, if it is being charged by a current of 10.0 A. (b) What is the output voltage of the battery charger?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Consider the situation in the figure below; a neutral conducting ball hangs from the ceiling by an insulating string, and a charged insulating rod is going to be placed nearby.
A. First, if the rod was not there, what statement best describes the charge distribution of the ball?
1) Since it is a conductor, all the charges are on the outside of the ball. 2) The ball is neutral, so it has no positive or negative charges anywhere. 3) The positive and negative charges are separated from each other, but we don't know what direction the ball is polarized. 4) The positive and negative charges are evenly distributed everywhere in the ball.
B. Now, when the rod is moved close to the ball, what happens to the charges on the ball?
1) There is a separation of charges in the ball; the side closer to the rod becomes positively charged, and the opposite side becomes negatively charged. 2) Negative charge is drawn from the ground (via the string), so the ball acquires a net negative charge. 3)…
answer question 5-9
AMPS
VOLTS
OHMS
5) 50 A
110 V
6) .08 A
39 V
7) 0.5 A
60
8) 2.5 A
110 V
Chapter 21 Solutions
College Physics For Ap® Courses
Ch. 21 - A switch has a variable resistance that is nearly...Ch. 21 - What is the voltage across the open switch in...Ch. 21 - There is a voltage across an open switch, such as...Ch. 21 - Why is the power dissipated by a closed switch,...Ch. 21 - A student in a physics lab mistakenly wired a...Ch. 21 - Knowing that the severity of a shock depends on...Ch. 21 - Would your headlights dim when you start your...Ch. 21 - Some strings of holiday lights are wired in series...Ch. 21 - If two household lightbulbs rated 60 W and 100 W...Ch. 21 - Suppose you are doing a physics lab that asks you...
Ch. 21 - Before World War II, some radios got power through...Ch. 21 - Some light bulbs have three power settings (not...Ch. 21 - Is every emf a potential difference? Is every...Ch. 21 - Explain which battery is doing the charging and...Ch. 21 - Given a battery, an assortment of resistors, and a...Ch. 21 - Two different 12-V automobile batteries on a store...Ch. 21 - What are the advantages and disadvantages of...Ch. 21 - Semitractor trucks use four large 12-V batteries....Ch. 21 - Call all of the currents going into the junction...Ch. 21 - Apply the junction rule to junction b in Figure...Ch. 21 - (a) What is the potential difference going from...Ch. 21 - Apply the loop rule to loop afedcba in Figure...Ch. 21 - Apply the loop rule to loops abgefa and cbgedc in...Ch. 21 - Why should you not connect an ammeter directly...Ch. 21 - Suppose you are using a multimeter (one designed...Ch. 21 - Specify the points to which you could connect a...Ch. 21 - To measure currents in Figure 21.49, you would...Ch. 21 - Why can a null measurement be more accurate than...Ch. 21 - If a potentiometer is used to measure cell emfs on...Ch. 21 - Regarding the units involved in the relationship t...Ch. 21 - The RC time constant in heart defibrillation is...Ch. 21 - When making an ECG measurement, it is important to...Ch. 21 - Draw two graphs of charge versus time on a...Ch. 21 - When charging a capacitor, as discussed in...Ch. 21 - When discharging a capacitor, as discussed in...Ch. 21 - Referring to Figure 21.38, draw a graph of...Ch. 21 - A long, inexpensive extension cord is connected...Ch. 21 - In Figure 21.41. does the graph indicate the time...Ch. 21 - An electronic apparatus may have large capacitors...Ch. 21 - (a) What is the resistance often 275-O resistors...Ch. 21 - (a) What is the resistance of a 1.00 102-O, a...Ch. 21 - What are the largest and smallest resistances you...Ch. 21 - An 1800-W toaster, a 1400-W electric frying pan,...Ch. 21 - Your car’s 30.0-W headlight and 2.40-kW starter...Ch. 21 - (a) Given a48.0-V battery and 24.0-O and 96.0-O...Ch. 21 - Referring to the example combining series and...Ch. 21 - Referring to Figure 21.6: (a) Calculate P3 and...Ch. 21 - Refer to Figure 21.7 and the discussion of lights...Ch. 21 - A 240-kV power transmission line carrying...Ch. 21 - Show that if two resistors R1and R2are combined...Ch. 21 - Unreasonable Results Two resistors, one having a...Ch. 21 - Unreasonable Results Two resistors, one having a...Ch. 21 - Standard automobile batteries have six lead-acid...Ch. 21 - Car bon-zinc dry cells (sometimes referred to as...Ch. 21 - What is the output voltage of a 3.0000-V lithium...Ch. 21 - (a) What is the terminal voltage of a large 1.54-V...Ch. 21 - What is the internal resistance of an automobile...Ch. 21 - (a) Find the terminal voltage of a 12.0-V...Ch. 21 - A car battery with a 12-V emf and an internal...Ch. 21 - The hot resistance of a flashlight bulb is 2.30 ,...Ch. 21 - The label or a portable radio recommends the use...Ch. 21 - An automobile starter motor has an equivalent...Ch. 21 - A child’s electronic toy is supplied by three...Ch. 21 - (a) What is the internal resistance of a voltage...Ch. 21 - A person with body resistance between his hands of...Ch. 21 - Electric fish generate current with biological...Ch. 21 - Integrated Concepts A 12.0-V emf automobile...Ch. 21 - Unreasonable Results A 1.58-V alkaline cell with a...Ch. 21 - Unreasonable Results (a) What is the internal...Ch. 21 - Apply the loop rule to loop abcdefgha in Figure...Ch. 21 - Apply the loop rule to loop aedcba in Figure...Ch. 21 - Verify the second equation in Example 21.5 by...Ch. 21 - Verify the third equation in Example 21.5 by...Ch. 21 - Apply the junction rule at point a in Figure...Ch. 21 - Apply the loop rule to loop abcdefghija in Figure...Ch. 21 - Apply the loop rule to loop akledcba in Figure...Ch. 21 - Find the currents flowing in the circuit in Figure...Ch. 21 - Solve Example 21.5, but use loop abcdefgha instead...Ch. 21 - Find the currents flowing in the circuit in Figure...Ch. 21 - Unreasonable Results Consider the circuit in...Ch. 21 - What is the sensitivity of the galvanometer (that...Ch. 21 - What is the sensitivity of the galvanometer (that...Ch. 21 - Find the resistance that must be placed in series...Ch. 21 - Find the resistance that must be placed in series...Ch. 21 - Find the resistance that must be placed in series...Ch. 21 - Find the resistance that must be placed in...Ch. 21 - Find the resistance that must be placed in series...Ch. 21 - Find the resistance that must be placed in...Ch. 21 - Suppose you measure the terminal voltage of a...Ch. 21 - Suppose you measure the terminal voltage of a...Ch. 21 - A certain ammeter has a resistance of 5.00X10-5 ...Ch. 21 - A 1,00-?O voltmeter is placed in parallel with a...Ch. 21 - A 0.0200- ammeter is placed in series with a...Ch. 21 - Unreasonable Results Suppose you have a 40.0-...Ch. 21 - Unreasonable Results (a) What resistance would you...Ch. 21 - What is the emf x of a cell being measured in a...Ch. 21 - Calculate the emfx of a dry cell for which a...Ch. 21 - When an unknown resistance Rxis placed in a...Ch. 21 - To what value must you adjust R3to balance a...Ch. 21 - (a) What is the unknown emfx in a potentiometer...Ch. 21 - Suppose you want to measure resistances in the...Ch. 21 - The timing device in an automobile’s intermittent...Ch. 21 - A heart pacemaker fires 72 times a minute, each...Ch. 21 - The duration of a photographic flash is related to...Ch. 21 - A 2.00- and a 7.50-F capacitor can be connected in...Ch. 21 - After two time constants, what percentage of the...Ch. 21 - A 500- resistor, an uncharged 1.50-F capacitor and...Ch. 21 - A heart defibrillator being used on a patient has...Ch. 21 - An ECG monitor must have an RC time constant less...Ch. 21 - Figure 21.55 shows how a bleeder resistor is used...Ch. 21 - Using the exact exponential treatment, find how...Ch. 21 - Using the exact exponential treatment, find how...Ch. 21 - Integrated Concepts If you wish to take a picture...Ch. 21 - Integrated Concepts A flashing lamp in a Christmas...Ch. 21 - Integrated Concepts A 160F capacitor charged to...Ch. 21 - Unreasonable Results (a) Calculate the capacitance...Ch. 21 - Construct Your Own Problem Consider a camera's...Ch. 21 - Construe! Your Own Problem Consider a rechargeable...
Additional Science Textbook Solutions
Find more solutions based on key concepts
1. An object is subject to two forces that do not point in opposite directions. Is it possible to choose their ...
College Physics: A Strategic Approach (3rd Edition)
Compare and contrast aerobic respiration, anaerobic respiration, and fermentation.
Microbiology with Diseases by Body System (5th Edition)
Classify each molecule as polar nonpolar. a. CS2 b. SO2 c. CH4 d. CH3CI
Introductory Chemistry (6th Edition)
One isomer of methamphetamine is the addictive illegal drug known as crank. Another isomer is a medicine for si...
Campbell Essential Biology (7th Edition)
The bond angles in a regular polygon with n sides are equal to 180360n a. What are the bond angles in a regular...
Organic Chemistry (8th Edition)
Name the components (including muscles) of the thoracic cage. List the contents of the thorax.
Human Physiology: An Integrated Approach (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The drawing shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Surface (1) has an area of 1.90 m², while surface (2) has an area of 3.90 m². The electric field in the drawing is uniform and has a magnitude of 215 N/C. Find the magnitude of the electric flux through surface (1 and 2 combined) if the angle 8 made between the electric field with surface (2) is 30.0°. Solve in Nm²/C 1 Ө Surface 2 Surface 1arrow_forwardPROBLEM 5 What is the magnitude and direction of the resultant force acting on the connection support shown here? F₁ = 700 lbs F2 = 250 lbs 70° 60° F3 = 700 lbs 45° F4 = 300 lbs 40° Fs = 800 lbs 18° Free Body Diagram F₁ = 700 lbs 70° 250 lbs 60° F3= = 700 lbs 45° F₁ = 300 lbs 40° = Fs 800 lbs 18°arrow_forwardPROBLEM 3 Cables A and B are Supporting a 185-lb wooden crate. What is the magnitude of the tension force in each cable? A 20° 35° 185 lbsarrow_forward
- The determined Wile E. Coyote is out once more to try to capture the elusive Road Runner of Loony Tunes fame. The coyote is strapped to a rocket, which provide a constant horizontal acceleration of 15.0 m/s2. The coyote starts off at rest 79.2 m from the edge of a cliff at the instant the roadrunner zips by in the direction of the cliff. If the roadrunner moves with constant speed, find the minimum velocity the roadrunner must have to reach the cliff before the coyote. (proper sig fig in answer)arrow_forwardPROBLEM 4 What is the resultant of the force system acting on the connection shown? 25 F₁ = 80 lbs IK 65° F2 = 60 lbsarrow_forwardThree point-like charges in the attached image are placed at the corners of an equilateral triangle as shown in the figure. Each side of the triangle has a length of 38.0 cm, and the point (C) is located half way between q1 and q3 along the side. Find the magnitude of the electric field at point (C). Let q1 = −2.80 µC, q2 = −3.40 µC, and q3 = −4.50 µC. Thank you.arrow_forward
- STRUCTURES I Homework #1: Force Systems Name: TA: PROBLEM 1 Determine the horizontal and vertical components of the force in the cable shown. PROBLEM 2 The horizontal component of force F is 30 lb. What is the magnitude of force F? 6 10 4 4 F = 600lbs F = ?arrow_forwardThe determined Wile E. Coyote is out once more to try to capture the elusive Road Runner of Loony Tunes fame. The coyote is strapped to a rocket, which provide a constant horizontal acceleration of 15.0 m/s2. The coyote starts off at rest 79.2 m from the edge of a cliff at the instant the roadrunner zips by in the direction of the cliff. If the roadrunner moves with constant speed, find the minimum velocity the roadrunner must have to reach the cliff before the coyote. (proper sig fig)arrow_forwardHello, I need some help with calculations for a lab, it is Kinematics: Finding Acceleration Due to Gravity. Equations: s=s0+v0t+1/2at2 and a=gsinθ. The hypotenuse,r, is 100cm (given) and a height, y, is 3.5 cm (given). How do I find the Angle θ1? And, for distance traveled, s, would all be 100cm? For my first observations I recorded four trials in seconds: 1 - 2.13s, 2 - 2.60s, 3 - 2.08s, & 4 - 1.95s. This would all go in the coloumn for time right? How do I solve for the experimental approximation of the acceleration? Help with trial 1 would be great so I can use that as a model for the other trials. Thanks!arrow_forward
- After the countdown at the beginning of a Mario Kart race, Bowser slams on the gas, taking off from rest. Bowser get up to a full speed of 25.5 m/s due to an acceleration of 10.4 m/s2. A)How much time does it take to reach full speed? B) How far does Bowser travel while accelerating?arrow_forwardThe drawing in the image attached shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Side 1 has an area of 1.90 m^2, Side 2 has an area of 3.90 m^2, the electric field in magnitude is around 215 N/C. Please find the electric flux magnitude through side 1 and 2 combined if the angle (theta) made between the electric field with side 2 is 30.0 degrees. I believe side 1 is 60 degrees but could be wrong. Thank you.arrow_forwardAfter the countdown at the beginning of a Mario Kart race, Bowser slams on the gas, taking off from rest. Bowser get up to a full speed of 25.5 m/s due to an acceleration of 10.4 m/s2.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
DC Series circuits explained - The basics working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=VV6tZ3Aqfuc;License: Standard YouTube License, CC-BY