COLLEGE PHYSICS
2nd Edition
ISBN: 9781711470832
Author: OpenStax
Publisher: XANEDU
expand_more
expand_more
format_list_bulleted
Question
Chapter 21, Problem 19CQ
To determine
To explain:
Whether all the currents going into the junction are positive or not.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Can all of the currents going into the junction as shown be positive? Explain.
Suppose a flashlight has 6.8 × 102 C of charge pass through it during time 0.35 h.
A. What is the rate of the flashlight’s energy consumption, in watts, if it operates at a voltage of 3.00 V?
I think you didn't account for the 10 V battery that gets placed in between A and B. I just don't understant why R2 and R3 become parallel to each other after placing the battery. So the answer is actully to add R1 and R2 and then find the Parallel ones, so Req = (1/(R1+R2)+ 1/R3)^-1. My question is how do you know which one you do first? Adding the parallel ones or the serial ones?
Chapter 21 Solutions
COLLEGE PHYSICS
Ch. 21 - Prob. 1CQCh. 21 - Prob. 2CQCh. 21 - Prob. 3CQCh. 21 - Prob. 4CQCh. 21 - Prob. 5CQCh. 21 - Knowing that the severity of a shock depends on...Ch. 21 - Would your headlights dim when you start your...Ch. 21 - Some strings of holiday lights are wired in series...Ch. 21 - If two household lightbulbs rated 60 W and 100 W...Ch. 21 - Suppose you are doing a physics lab that asks you...
Ch. 21 - Before World War II, some radios got power through...Ch. 21 - Some light bulbs have three power settings (not...Ch. 21 - Is every emf a potential difference? Is every...Ch. 21 - Prob. 14CQCh. 21 - Given a battery, an assortment of resistors, and a...Ch. 21 - Two different 12-V automobile batteries on a store...Ch. 21 - What are the advantages and disadvantages of...Ch. 21 - Semitractor trucks use four large 12-V batteries....Ch. 21 - Prob. 19CQCh. 21 - Prob. 20CQCh. 21 - Prob. 21CQCh. 21 - Prob. 22CQCh. 21 - Prob. 23CQCh. 21 - Prob. 24CQCh. 21 - Suppose you are using a multimeter (one designed...Ch. 21 - Prob. 26CQCh. 21 - Prob. 27CQCh. 21 - Why can a null measurement be more accurate than...Ch. 21 - If a potentiometer is used to measure cell emfs on...Ch. 21 - Regarding the units involved in the relationship t...Ch. 21 - The RC time constant in heart defibrillation is...Ch. 21 - When making an ECG measurement, it is important to...Ch. 21 - Prob. 33CQCh. 21 - Prob. 34CQCh. 21 - Prob. 35CQCh. 21 - Prob. 36CQCh. 21 - A long, inexpensive extension cord is connected...Ch. 21 - Prob. 38CQCh. 21 - Prob. 39CQCh. 21 - (a) What is the resistance often 275-O resistors...Ch. 21 - (a) What is the resistance of a 1.00 102-O, a...Ch. 21 - What are the largest and smallest resistances you...Ch. 21 - An 1800-W toaster, a 1400-W electric frying pan,...Ch. 21 - Your car’s 30.0-W headlight and 2.40-kW starter...Ch. 21 - (a) Given a48.0-V battery and 24.0-O and 96.0-O...Ch. 21 - Referring to the example combining series and...Ch. 21 - Referring to Figure 21.6: (a) Calculate P3 and...Ch. 21 - Refer to Figure 21.7 and the discussion of lights...Ch. 21 - Prob. 10PECh. 21 - Show that if two resistors R1and R2are combined...Ch. 21 - Unreasonable Results Two resistors, one having a...Ch. 21 - Unreasonable Results Two resistors, one having a...Ch. 21 - Standard automobile batteries have six lead-acid...Ch. 21 - Car bon-zinc dry cells (sometimes referred to as...Ch. 21 - What is the output voltage of a 3.0000-V lithium...Ch. 21 - (a) What is the terminal voltage of a large 1.54-V...Ch. 21 - What is the internal resistance of an automobile...Ch. 21 - (a) Find the terminal voltage of a 12.0-V...Ch. 21 - A car battery with a 12-V emf and an internal...Ch. 21 - The hot resistance of a flashlight bulb is 2.30 ,...Ch. 21 - The label or a portable radio recommends the use...Ch. 21 - An automobile starter motor has an equivalent...Ch. 21 - A child’s electronic toy is supplied by three...Ch. 21 - (a) What is the internal resistance of a voltage...Ch. 21 - A person with body resistance between his hands of...Ch. 21 - Electric fish generate current with biological...Ch. 21 - Integrated Concepts A 12.0-V emf automobile...Ch. 21 - Unreasonable Results A 1.58-V alkaline cell with a...Ch. 21 - Unreasonable Results (a) What is the internal...Ch. 21 - Prob. 31PECh. 21 - Prob. 32PECh. 21 - Verify the second equation in Example 21.5 by...Ch. 21 - Verify the third equation in Example 21.5 by...Ch. 21 - Prob. 35PECh. 21 - Prob. 36PECh. 21 - Prob. 37PECh. 21 - Prob. 38PECh. 21 - Solve Example 21.5, but use loop abcdefgha instead...Ch. 21 - Prob. 40PECh. 21 - Prob. 41PECh. 21 - What is the sensitivity of the galvanometer (that...Ch. 21 - What is the sensitivity of the galvanometer (that...Ch. 21 - Find the resistance that must be placed in series...Ch. 21 - Find the resistance that must be placed in series...Ch. 21 - Find the resistance that must be placed in series...Ch. 21 - Find the resistance that must be placed in...Ch. 21 - Find the resistance that must be placed in series...Ch. 21 - Find the resistance that must be placed in...Ch. 21 - Prob. 50PECh. 21 - Suppose you measure the terminal voltage of a...Ch. 21 - A certain ammeter has a resistance of 5.00X10-5 ...Ch. 21 - A 1,00-?O voltmeter is placed in parallel with a...Ch. 21 - A 0.0200- ammeter is placed in series with a...Ch. 21 - Unreasonable Results Suppose you have a 40.0-...Ch. 21 - Unreasonable Results (a) What resistance would you...Ch. 21 - What is the emf x of a cell being measured in a...Ch. 21 - Calculate the emfx of a dry cell for which a...Ch. 21 - When an unknown resistance Rxis placed in a...Ch. 21 - To what value must you adjust R3to balance a...Ch. 21 - (a) What is the unknown emfx in a potentiometer...Ch. 21 - Suppose you want to measure resistances in the...Ch. 21 - The timing device in an automobile’s intermittent...Ch. 21 - A heart pacemaker fires 72 times a minute, each...Ch. 21 - The duration of a photographic flash is related to...Ch. 21 - A 2.00- and a 7.50-F capacitor can be connected in...Ch. 21 - After two time constants, what percentage of the...Ch. 21 - A 500- resistor, an uncharged 1.50-F capacitor and...Ch. 21 - A heart defibrillator being used on a patient has...Ch. 21 - An ECG monitor must have an RC time constant less...Ch. 21 - Prob. 71PECh. 21 - Using the exact exponential treatment, find how...Ch. 21 - Using the exact exponential treatment, find how...Ch. 21 - Integrated Concepts If you wish to take a picture...Ch. 21 - Integrated Concepts A flashing lamp in a Christmas...Ch. 21 - Integrated Concepts A 160F capacitor charged to...Ch. 21 - Unreasonable Results (a) Calculate the capacitance...Ch. 21 - Construct Your Own Problem Consider a camera's...Ch. 21 - Construe! Your Own Problem Consider a rechargeable...Ch. 21 - Prob. 1TPCh. 21 - Prob. 2TPCh. 21 - Prob. 3TPCh. 21 - Prob. 4TPCh. 21 - Prob. 5TPCh. 21 - Prob. 6TPCh. 21 - Prob. 7TPCh. 21 - Prob. 8TP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A potential difference of 1.00 V is maintained across a 10.0- resistor for a period of 20.0 s. What total charge passes by a point in one of the wires connected to the resistor in this time interval? (a) 200 C (b) 20.0 C (c) 2.00 C (d) 0.005 00 C (e) 0.050 0 Carrow_forwardTwo conducting wires A and B of the same length and radius are connected across the same potential difference. Conductor A has twice the resistivity of conductor B. What is the ratio of the power delivered to A to the power delivered to B? (a) 2 (b) 2 (c) 1 (d) 12 (e)12arrow_forwardIn the figure, R1 = 30, R2= 62, and R3= 52. The current through Ih through R2is 4.00 A. Determine the following: 3. Voltage across the battery (8) R1 R2 R3arrow_forward
- 3.0 uF 19. What is the charge on the capacitor if the switch has been closed for a very long time? 40 2 30 2 A) B) C) D) E) 3.0 με 50 μC 180 μ 340 µC 420 µC 140Varrow_forwardThe 10.00 V battery in the figure (Figure 1) is removed from the circuit and reinserted with the opposite polarity, so that its positive terminal is now next to point a. The rest of the circuit is as shown in the figure. For related problemsolving tips and strategies, you may want to view a Video Tutor Solution of A complex network. Figure 2.00 2 10.00 V, a ww+ 1.00 2 5.00 V 14.00 Ω 3.00 Ω www 10.00 Ω b 1 of 1 Find the current through 3.00 resistor. Express your answer with the appropriate units. 13.00 2 = Submit Part B 14.00 12 = Submit Part C Find the current through 4.00 2 resistor. Express your answer with the appropriate units. I10.00 = Submit Part D Value μA Request Answer Vab = · μA Value Request Answer Find the current through 10.00 resistor. Express your answer with the appropriate units. Value μà Request Answer Value Units μA C Units Units Find the potential difference Vab of point a relative to point b. Express your answer with the appropriate units. Units ? ? ? ?arrow_forwardDuring lightning strikes from a cloud to the ground, currents as high as 25 x 10 A can OCcur and last for about 40us. How much charge is transferred from the cloud to the earth during such a strike? Select one: 1000 C 1.0x 103C 1.0C None of these is correct 10x 105 C Next paarrow_forward
- A heart pacemaker fires exactly 73times a minute. Each time it fires, a 35.0 nF capacitor is charged by a battery in series with a resistor to 0.682 of its full voltage. What is the value of the resistance ? ?arrow_forwardIn the circuit shown in Fig. 22.22, calculate (a) the values of currents I, I, and I3 (b) the potential difference between points B and E Given E, = 12 V, E, = 6 V, R, = 5 N, R, = 3 Q and R3 = 22 A B 13 R2 R3 E1 E2 1. E D Fig. 22.22 www wwarrow_forwardWhy is it possible for a bird to sit on a high - voltage wire withoutbeing electrocuted? (See Fig. CQ18.9.)arrow_forward
- In the circuit shown in the figure the switch has been closed for a long time so that the capacitor is fully charged. At t=0 the switch is opened. Write an expression for the charge on the capacitor as a function of time. 12.0 kN 10.0 µF 9.00 V Ro = 15.0 kN 3.00 kN Select one: О а. Q3 15дС(1 — е 40.186) O b. Q = 10µC(1 – e t/0.03% ) Q = 90µC(1 – e t/0.15s) O d. Q = 50µCe t/0.03s Q = 12µC(1 – e t/0.15s) e. Of. Q = 90µCe t/0.15s Q = 10µCe t/0.15s O h. Q = 50µCe t/0.18s a O o o O O Oarrow_forwardThe current in a circuit with only one battery is 2.0 A. Shown is how the potential changes when going around the circuit in the clockwise direction, starting from the lower left corner. Draw the circuit diagram.arrow_forwardPlease Asaparrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
DC Series circuits explained - The basics working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=VV6tZ3Aqfuc;License: Standard YouTube License, CC-BY