
EBK FUNDAMENTALS OF THERMAL-FLUID SCIEN
5th Edition
ISBN: 9781259151323
Author: CENGEL
Publisher: MCGRAW HILL BOOK COMPANY
expand_more
expand_more
format_list_bulleted
Question
Chapter 21, Problem 121RQ
To determine
The solar absorptivity of the surface.
The rate of absorption of solar radiation.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
2500 kg/hr of (20-80) nicotine water solution is to be extracted with benzene containing 0.5% nicotine in
the 1st and 2ed stages while the 3rd stage is free of nicotine. Cross- current operation is used with different amounts
of solvent for each stages 2000kg/hr in the 1st stage, 2300 kg/hr in the 2nd stage, 2600 kg/hr in the 3rd,
determine: -
a- The final raffinate concentration and % extraction.
b-
b- The minimum amount of solvent required for counter-current operation if the minimum concentration
will be reduced to 5% in the outlet raffinate.
Equilibrium data
Wt % Nicotine in water
Wt % Nicotine in benzene
0
4
16
25
0
4
21
30
Quiz/An eccentrically loaded bracket is welded to the support as shown in Figure below. The load is static. The weld size
for weld w1 is h1=6mm, for w2 h2 5mm, and for w3 is h3 -5.5 mm. Determine the safety factor (S.f) for the welds.
F=22 kN. Use an AWS Electrode type (E90xx).
140
101.15
REDMI NOTE 8 PRO
AI QUAD CAMERA
F
(read image)
Chapter 21 Solutions
EBK FUNDAMENTALS OF THERMAL-FLUID SCIEN
Ch. 21 - Prob. 1PCh. 21 - By what properties is an electromagnetic wave...Ch. 21 - What is thermal radiation? How does it differ from...Ch. 21 - Prob. 4PCh. 21 - Prob. 5PCh. 21 - Prob. 6PCh. 21 - Prob. 7PCh. 21 - Prob. 8PCh. 21 - Prob. 9PCh. 21 - Prob. 10P
Ch. 21 - A radio station is broadcasting radio waves at a...Ch. 21 - Prob. 12PCh. 21 - Prob. 13PCh. 21 - Prob. 14PCh. 21 - Prob. 15PCh. 21 - Define the total and spectral blackbody emissive...Ch. 21 - Prob. 17PCh. 21 - Prob. 18PCh. 21 - Prob. 19PCh. 21 - Prob. 20PCh. 21 - A small body is placed inside of a spherical...Ch. 21 - Prob. 23PCh. 21 - A thin vertical copper plate is subjected to a...Ch. 21 - Prob. 25PCh. 21 - Prob. 26PCh. 21 - The temperature of the filament of an incandescent...Ch. 21 - The temperature of the filament of an incandescent...Ch. 21 - Prob. 30PCh. 21 - Prob. 31PCh. 21 - Prob. 32PCh. 21 - Prob. 33PCh. 21 - Prob. 34PCh. 21 - Define the properties emissivity and absorptivity....Ch. 21 - Define the properties reflectivity and...Ch. 21 - Prob. 37PCh. 21 - Prob. 38PCh. 21 - A furnace that has a 40-cm × 40-cm glass window...Ch. 21 - Prob. 40PCh. 21 - The emissivity of a tungsten filament can be...Ch. 21 - Prob. 42PCh. 21 - Prob. 43PCh. 21 - Prob. 44PCh. 21 - Prob. 45PCh. 21 - Prob. 46PCh. 21 - An opaque horizontal plate is well insulated on...Ch. 21 - Prob. 48PCh. 21 - Prob. 49PCh. 21 - Prob. 50PCh. 21 - What does the view factor represent? When is the...Ch. 21 - How can you determine the view factor F12 when the...Ch. 21 - What are the summation rule and the superposition...Ch. 21 - Prob. 54PCh. 21 - Consider two coaxial parallel circular disks of...Ch. 21 - Consider two coaxial parallel circular disks of...Ch. 21 - Prob. 57PCh. 21 - Prob. 58PCh. 21 - Prob. 59PCh. 21 - Prob. 60PCh. 21 - Determine the four view factors associated with an...Ch. 21 - Prob. 62PCh. 21 - Prob. 63PCh. 21 - Prob. 64PCh. 21 - Prob. 65PCh. 21 - Prob. 66PCh. 21 - Determine the view factors F13 and F23 between the...Ch. 21 - Prob. 68PCh. 21 - Prob. 69PCh. 21 - Two infinitely long parallel plates of width w are...Ch. 21 - Prob. 71PCh. 21 - Prob. 72PCh. 21 - Prob. 73PCh. 21 - Why is the radiation analysis of enclosures that...Ch. 21 - Prob. 75PCh. 21 - Prob. 76PCh. 21 - Prob. 77PCh. 21 - What are the two methods used in radiation...Ch. 21 - Prob. 79PCh. 21 - Prob. 80PCh. 21 - Prob. 82PCh. 21 - Two black parallel rectangles with dimensions 3 ft...Ch. 21 - Prob. 84PCh. 21 - Prob. 85PCh. 21 - Prob. 86PCh. 21 - Prob. 87PCh. 21 - Prob. 88PCh. 21 - Consider a hemispherical furnace of diameter D = 5...Ch. 21 - A dryer is shaped like a long semicylindrical duct...Ch. 21 - Prob. 91PCh. 21 - Prob. 92PCh. 21 - Prob. 93PCh. 21 - Prob. 94PCh. 21 - Prob. 95PCh. 21 - Prob. 96PCh. 21 - Prob. 97PCh. 21 - Prob. 99PCh. 21 - Prob. 100PCh. 21 - Prob. 101PCh. 21 - Reconsider Prob. 21–101. Using an appropriate...Ch. 21 - Air is flowing between two infinitely large...Ch. 21 - Prob. 104PCh. 21 - Prob. 105PCh. 21 - Prob. 106PCh. 21 - Prob. 107PCh. 21 - Prob. 108PCh. 21 - Prob. 109PCh. 21 - Prob. 111PCh. 21 - Prob. 112PCh. 21 - Prob. 113PCh. 21 - Prob. 114PCh. 21 - A 1-m-diameter spherical cavity is maintained at a...Ch. 21 - Prob. 117RQCh. 21 - Prob. 118RQCh. 21 - Prob. 119RQCh. 21 - Prob. 120RQCh. 21 - Prob. 121RQCh. 21 - Prob. 122RQCh. 21 - Prob. 123RQCh. 21 - Prob. 124RQCh. 21 - Prob. 125RQCh. 21 - Consider an enclosure consisting of eight...Ch. 21 - Consider a cylindrical enclosure with A1, A2, and...Ch. 21 - Two parallel back disks are positioned coaxially...Ch. 21 - Two parallel concentric disks, 20 cm and 40 cm in...Ch. 21 - A dryer is shaped like a long semicylindrical duct...Ch. 21 - Prob. 131RQCh. 21 - Prob. 132RQCh. 21 - Prob. 133RQCh. 21 - Prob. 134RQCh. 21 - A 2-m-internal-diameter double-walled spherical...Ch. 21 - Prob. 136RQCh. 21 - Prob. 137RQCh. 21 - Prob. 138RQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Problem 3.30 A piston-cylinder device contains 0.85 kg of refrigerant- 134a at -10°C. The piston that is free to move has a mass of 12 kg and a diameter of 25 cm. The local atmospheric pressure is 100 kPa. Now, heat is transferred to refrigerant-134a until the temperature is 15°C. Determine (a) the final pressure, (b) the change in the volume of the refrigerant, and (c) the change in the enthalpy of the refrigerant-134a. please show Al work step by steparrow_forwardPart 1 The storage tank contains lubricating oil of specific gravity 0.86 In one inclined side of the tank, there is a 0.48 m diameter circular inspection door, mounted on a horizontal shaft along the centre line of the gate. The oil level in the tank rests 8.8 m above the mounted shaft. (Please refer table 01 for relevant SG, D and h values). Describe the hydrostatic force and centre of pressure with the aid of a free body diagram of the inspection door. Calculate the magnitude of the hydrostatic force and locate the centre of pressure. 45° Estimate the moment that would have to be applied to the shaft to open the gate. Stop B If the oil level raised by 2 m from the current level, calculate the new moment required to open the gate. Figure 01arrow_forwardFrom thermodynamics please fill in the table show all work step by steparrow_forward
- The 150-lb skater passes point A with a speed of 6 ft/s. (Figure 1) Determine his speed when he reaches point B. Neglect friction. Determine the normal force exerted on him by the track at this point. 25 ft B = 4x A 20 ft xarrow_forwardA virtual experiment is designed to determine the effect of friction on the timing and speed of packages being delivered to a conveyor belt and the normal force applied to the tube. A package is held and then let go at the edge of a circular shaped tube of radius R = 5m. The particle at the bottom will transfer to the conveyor belt, as shown below. Run the simulations for μ = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and determine the time and speed at which the package is delivered to the conveyor belt. In addition, determine the maximum normal force and its location along the path as measured by angle 0. Submit in hardcopy form: (0) Free Body Diagram, equations underneath, derivations (a) Your MATLAB mfile (b) A table listing the values in 5 columns: μ, T (time of transfer), V (speed of transfer), 0 (angle of max N), Nmax (max N) (c) Based on your results, explain in one sentence what you think will happen to the package if the friction is increased even further, e.g. μ = 0.8. NOTE: The ODE is…arrow_forwardPatm = 1 bar Piston m = 50 kg 5 g of Air T₁ = 600 K P₁ = 3 bar Stops A 9.75 x 10-3 m² FIGURE P3.88arrow_forward
- Assume a Space Launch System (Figure 1(a)) that is approximated as a cantilever undamped single degree of freedom (SDOF) system with a mass at its free end (Figure 1(b)). The cantilever is assumed to be massless. Assume a wind load that is approximated with a concentrated harmonic forcing function p(t) = posin(ωt) acting on the mass. The known properties of the SDOF and the applied forcing function are given below. • Mass of SDOF: m =120 kip/g • Acceleration of gravity: g = 386 in/sec2 • Bending sectional stiffness of SDOF: EI = 1015 lbf×in2 • Height of SDOF: h = 2000 inches • Amplitude of forcing function: po = 6 kip • Forcing frequency: f = 8 Harrow_forwardAssume a Space Launch System (Figure 1(a)) that is approximated as a cantilever undamped single degree of freedom (SDOF) system with a mass at its free end (Figure 1(b)). The cantilever is assumed to be massless. Assume a wind load that is approximated with a concentrated harmonic forcing function p(t) = posin(ωt) acting on the mass. The known properties of the SDOF and the applied forcing function are given below. • Mass of SDOF: m =120 kip/g • Acceleration of gravity: g = 386 in/sec2 • Bending sectional stiffness of SDOF: EI = 1015 lbf×in2 • Height of SDOF: h = 2000 inches • Amplitude of forcing function: po = 6 kip • Forcing frequency: f = 8 Hz Figure 1: Single-degree-of-freedom system in Problem 1. Please compute the following considering the steady-state response of the SDOF system. Do not consider the transient response unless it is explicitly stated in the question. (a) The natural circular frequency and the natural period of the SDOF. (10 points) (b) The maximum displacement of…arrow_forwardAssume a Space Launch System (Figure 1(a)) that is approximated as a cantilever undamped single degree of freedom (SDOF) system with a mass at its free end (Figure 1(b)). The cantilever is assumed to be massless. Assume a wind load that is approximated with a concentrated harmonic forcing function p(t) = posin(ωt) acting on the mass. The known properties of the SDOF and the applied forcing function are given below. • Mass of SDOF: m =120 kip/g • Acceleration of gravity: g = 386 in/sec2 • Bending sectional stiffness of SDOF: EI = 1015 lbf×in2 • Height of SDOF: h = 2000 inches • Amplitude of forcing function: po = 6 kip • Forcing frequency: f = 8 Hz Figure 1: Single-degree-of-freedom system in Problem 1. Please compute the following considering the steady-state response of the SDOF system. Do not consider the transient response unless it is explicitly stated in the question. (a) The natural circular frequency and the natural period of the SDOF. (10 points) (b) The maximum displacement of…arrow_forward
- Please solve 13 * √(2675.16)² + (63.72 + 2255,03)² = 175x106 can you explain the process for getting d seperate thank youarrow_forwardIf the 300-kg drum has a center of mass at point G, determine the horizontal and vertical components of force acting at pin A and the reactions on the smooth pads C and D. The grip at B on member DAB resists both horizontal and vertical components of force at the rim of the drum. P 60 mm; 60 mm: 600 mm A E 30° B C 390 mm 100 mm D Garrow_forwardThe design of the gear-and-shaft system shown requires that steel shafts of the same diameter be used for both AB and CD. It is further required that the angle D through which end D of shaft CD rotates not exceed 1.5°. Knowing that G = 77.2 GPa, determine the required diameter of the shafts. 40 mm 400 mm 100 mm 600 mm T-1000 N-m Darrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license