a) We can see from the table that with the increase in value of x , there is decrease in value of y , hence we can say that coefficient of correlation is negative b) Equation of least squares is y = − 3.8856 x + 9.3251 and correlation coefficient r = − 0.9996 Plot is c) Predicted value of y at x = 2.4 is 0.00034 Given information: Five points x 1 3 5 7 10 y −5.8 −2.4 −10.7 −17.8 −29.3 Formula used: Slope, m = ∑ i = 1 n ( x i − X ¯ ) ( y i − Y ¯ ) ∑ i = 1 n ( x i − X ¯ ) 2 Y axis intercept, b = Y ¯ − m X ¯ Correlation Coefficient, r = ∑ i = 1 n ( x i − X ¯ ) ( y i − Y ¯ ) ∑ i = 1 n ( x i − X ¯ ) 2 ∑ i = 1 n ( y i − Y ¯ ) 2 Where x i and y i are the i th entry of x and y ; X ¯ and Y ¯ are means of x and y Calculation: Step 1: Calculate the mean of x and y X ¯ = 1 + 3 + 5 + 7 + 10 5 = 5.2 Y ¯ = 5.8 + ( − 2.4 ) + ( − 10.7 ) + ( − 17.8 ) + ( − 29.3 ) 5 = − 10.88 Step 2: Plot the table as shown i x i y i x i − X ¯ y i − Y ¯ ( x i − X ¯ ) 2 ( x i − X ¯ ) ( y i − Y ¯ ) ( y i − Y ¯ ) 2 1 1 5.8 -4.2 16.68 17.64 -70.056 278.2224 2 3 -2.4 -2.2 8.48 4.84 -18.658 71.9104 3 5 -10.7 -0.2 0.18 0.04 -0.036 0.0324 4 7 -17.8 1.8 -6.92 3.24 -12.456 47.8864 5 10 -29.3 4.8 -18.42 23.04 -88.416 339.2964 ∑ i = 1 n ( x i − X ¯ ) 2 = 48.8 ∑ i = 1 n ( x i − X ¯ ) ( y i − Y ¯ ) = − 189.62 ∑ i = 1 n ( y i − Y ¯ ) 2 = 737.3480 Step 3: Calculate the slope m = ∑ i = 1 n ( x i − X ¯ ) ( y i − Y ¯ ) ∑ i = 1 n ( x i − X ¯ ) 2 = − 189.62 48.8 ≈ − 3.8856 Step 4: Calculate y intercept b = Y ¯ − m X ¯ = − 10.88 − ( − 3.8856 × 5.2 ) ≈ 9.3251 The slope of the line is − 3.8856 and y intercept is 9.3251 Using slope intercept form, y = m x + b ,equation is y = − 3.8856 x + 9.3251 Step 5: Draw the scatter plot Step 6: Calculate the Correlation coefficient r = ∑ i = 1 n ( x i − X ¯ ) ( y i − Y ¯ ) ∑ i = 1 n ( x i − X ¯ ) 2 ∑ i = 1 n ( y i − Y ¯ ) 2 = − 189.62 48.8 × 737.3480 ≈ − 0.9996 Step 7: Prediction for x = 2.4 ; plug x = 2.4 in y = − 3.8856 x + 9.3251 y = − 3.8856 ( 2.4 ) + 9.3251 = 0.00034
a) We can see from the table that with the increase in value of x , there is decrease in value of y , hence we can say that coefficient of correlation is negative b) Equation of least squares is y = − 3.8856 x + 9.3251 and correlation coefficient r = − 0.9996 Plot is c) Predicted value of y at x = 2.4 is 0.00034 Given information: Five points x 1 3 5 7 10 y −5.8 −2.4 −10.7 −17.8 −29.3 Formula used: Slope, m = ∑ i = 1 n ( x i − X ¯ ) ( y i − Y ¯ ) ∑ i = 1 n ( x i − X ¯ ) 2 Y axis intercept, b = Y ¯ − m X ¯ Correlation Coefficient, r = ∑ i = 1 n ( x i − X ¯ ) ( y i − Y ¯ ) ∑ i = 1 n ( x i − X ¯ ) 2 ∑ i = 1 n ( y i − Y ¯ ) 2 Where x i and y i are the i th entry of x and y ; X ¯ and Y ¯ are means of x and y Calculation: Step 1: Calculate the mean of x and y X ¯ = 1 + 3 + 5 + 7 + 10 5 = 5.2 Y ¯ = 5.8 + ( − 2.4 ) + ( − 10.7 ) + ( − 17.8 ) + ( − 29.3 ) 5 = − 10.88 Step 2: Plot the table as shown i x i y i x i − X ¯ y i − Y ¯ ( x i − X ¯ ) 2 ( x i − X ¯ ) ( y i − Y ¯ ) ( y i − Y ¯ ) 2 1 1 5.8 -4.2 16.68 17.64 -70.056 278.2224 2 3 -2.4 -2.2 8.48 4.84 -18.658 71.9104 3 5 -10.7 -0.2 0.18 0.04 -0.036 0.0324 4 7 -17.8 1.8 -6.92 3.24 -12.456 47.8864 5 10 -29.3 4.8 -18.42 23.04 -88.416 339.2964 ∑ i = 1 n ( x i − X ¯ ) 2 = 48.8 ∑ i = 1 n ( x i − X ¯ ) ( y i − Y ¯ ) = − 189.62 ∑ i = 1 n ( y i − Y ¯ ) 2 = 737.3480 Step 3: Calculate the slope m = ∑ i = 1 n ( x i − X ¯ ) ( y i − Y ¯ ) ∑ i = 1 n ( x i − X ¯ ) 2 = − 189.62 48.8 ≈ − 3.8856 Step 4: Calculate y intercept b = Y ¯ − m X ¯ = − 10.88 − ( − 3.8856 × 5.2 ) ≈ 9.3251 The slope of the line is − 3.8856 and y intercept is 9.3251 Using slope intercept form, y = m x + b ,equation is y = − 3.8856 x + 9.3251 Step 5: Draw the scatter plot Step 6: Calculate the Correlation coefficient r = ∑ i = 1 n ( x i − X ¯ ) ( y i − Y ¯ ) ∑ i = 1 n ( x i − X ¯ ) 2 ∑ i = 1 n ( y i − Y ¯ ) 2 = − 189.62 48.8 × 737.3480 ≈ − 0.9996 Step 7: Prediction for x = 2.4 ; plug x = 2.4 in y = − 3.8856 x + 9.3251 y = − 3.8856 ( 2.4 ) + 9.3251 = 0.00034
Definition Definition Statistical measure used to assess the strength and direction of relationships between two variables. Correlation coefficients range between -1 and 1. A coefficient value of 0 indicates that there is no relationship between the variables, whereas a -1 or 1 indicates that there is a perfect negative or positive correlation.
Chapter 2.1, Problem 111E
To determine
To determine:
a) We can see from the table that with the increase in value of x
, there is decrease in value of y
, hence we can say that coefficient of correlation is negative
b) Equation of least squares is y=−3.8856x+9.3251
and correlation coefficientr=−0.9996
Plot is
c) Predicted value of y at x=2.4
is 0.00034
Given information: Five points
x
1
3
5
7
10
y
−5.8
−2.4
−10.7
−17.8
−29.3
Formula used:Slope, m=∑i=1n(xi−X¯)(yi−Y¯)∑i=1n(xi−X¯)2
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.
Correlation Vs Regression: Difference Between them with definition & Comparison Chart; Author: Key Differences;https://www.youtube.com/watch?v=Ou2QGSJVd0U;License: Standard YouTube License, CC-BY
Correlation and Regression: Concepts with Illustrative examples; Author: LEARN & APPLY : Lean and Six Sigma;https://www.youtube.com/watch?v=xTpHD5WLuoA;License: Standard YouTube License, CC-BY