Engineering Mechanics: Dynamics (14th Edition)
14th Edition
ISBN: 9780133915389
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 20.4, Problem 45P
To determine
The velocity of the particle.
The acceleration of the particle.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider the portion of an excavator shown. At the instant under consideration, the hydraulic cylinder is extending at a rate of 5 in./sec, which is decreasing at the rate of 2 in./sec every second. Simultaneously, the cylinder is rotating about a horizontal axis through O at a constant rate of 13 deg/sec. Determine the velocity v and acceleration a of the clevis attachment at B.
Write the velocity and acceleration as vectors.Answers:v = ( er + eθ) in./seca = ( er + eθ) in./sec2
3.0 m/s relative to the bar as shown. The distances are L = 2.97 m and d
0.82 m
The small collar A is sliding on the bent bar with speed
Simultaneously, the bar is rotating with angular velocity w 1.34 rad/s about the fixed pivot B. Take the x-y axes to be fixed to the bar and determine the
Coriolis acceleration acor of the slider for the instant represented. Interpret your result.
BC
Answer: acor =( | i
ii
j) m/s2
The small ball is moving along the radial slot of the rotating disk. At the instant shown, the disk has
an angular velocity w = 4.1 rad/s which is decreasing at 1.7 rad/s per second, x = 230 mm, x = = 0.32
m/s, and ï = -0.2 m/s². Calculate the magnitudes of the absolute velocity and acceleration of the
ball for this instant. (v₁ = 1.0 m/s, a₁ = 4.64 m/s²)
=
ω
x
0
A
Chapter 20 Solutions
Engineering Mechanics: Dynamics (14th Edition)
Ch. 20.3 - Prob. 1PCh. 20.3 - Prob. 2PCh. 20.3 - Prob. 3PCh. 20.3 - Prob. 4PCh. 20.3 - Prob. 5PCh. 20.3 - Prob. 6PCh. 20.3 - Prob. 7PCh. 20.3 - The disk rotates about the shaft S, while the...Ch. 20.3 - The electric fan is mounted on a swivel support...Ch. 20.3 - Prob. 11P
Ch. 20.3 - Prob. 12PCh. 20.3 - The right circular cone rotates about the z axis...Ch. 20.3 - Prob. 14PCh. 20.3 - Prob. 15PCh. 20.3 - Prob. 16PCh. 20.3 - Prob. 17PCh. 20.3 - Prob. 18PCh. 20.3 - Prob. 20PCh. 20.3 - Prob. 21PCh. 20.3 - Prob. 22PCh. 20.3 - Prob. 23PCh. 20.3 - Prob. 24PCh. 20.3 - Prob. 25PCh. 20.3 - Rod AB is attached to collars at its ends by using...Ch. 20.3 - Rod AB is attached to collars at its ends by using...Ch. 20.3 - If the rod is attached with ball-and-socket joints...Ch. 20.3 - Prob. 29PCh. 20.3 - If collar A has a speed vA = 4 m/s, determine the...Ch. 20.3 - Prob. 31PCh. 20.3 - If the collar A in Prob. 20-31 has a deceleration...Ch. 20.3 - Prob. 33PCh. 20.3 - Rod CD is attached to the rotating arms using...Ch. 20.3 - Prob. 35PCh. 20.3 - Prob. 36PCh. 20.4 - So1ve Example 20.5 such that the x, y, z axes move...Ch. 20.4 - Prob. 38PCh. 20.4 - Prob. 39PCh. 20.4 - At the instant = 60, the construction lift is...Ch. 20.4 - Prob. 41PCh. 20.4 - Prob. 42PCh. 20.4 - Prob. 43PCh. 20.4 - Prob. 44PCh. 20.4 - Prob. 45PCh. 20.4 - Prob. 46PCh. 20.4 - Prob. 47PCh. 20.4 - At the given instant the rod is turning about the...Ch. 20.4 - Prob. 49PCh. 20.4 - Prob. 50PCh. 20.4 - Prob. 51PCh. 20.4 - Prob. 52PCh. 20.4 - Prob. 53PCh. 20.4 - At the instant shown, the arm AB is rotating about...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Consider the portion of an excavator shown. At the instant under consideration, the hydraulic cylinder is extending at a rate of 7 in./sec, which is decreasing at the rate of 3 in./sec every second. Simultaneously, the cylinder is rotating about a horizontal axis through O at a constant rate of 10 deg/sec. Determine the velocity v and acceleration a of the clevis attachment at B. Answer the blank questions onlyarrow_forwardConsider the portion of an excavator shown. At the instant under consideration, the hydraulic cylinder is extending at a rate of 6 in./sec, which is decreasing at the rate of 2 in./sec every second. Simultaneously, the cylinder is rotating about a horizontal axis through O at a constant rate of 14 deg/sec. Determine the velocity v and acceleration a of the clevis attachment at B. Answers: v=i a = ( 3.7' 38⁰ 2.8' A i e, + i B eg) in./sec ee) in./sec²arrow_forward= = The disk of radius R 2.3 ft rolls without slipping on the horizontal surface, and at the instant represented, the center O has a constant velocity vo 5.6 ft/sec. For this instant, the particle A moving along the circular slot of mean radius r = 2 ft has the indicated speed u = 4 ft/sec relative to the disk which is decreasing at a rate of 4.2 ft/sec per second. Determine the magnitudes of the absolute velocity and acceleration of particle A. (v₁ = 10.5 ft/sec, aд = 39.6 ft/sec²) R r и νοarrow_forward
- The member OA of the industrial robot telescopes and pivots about the fixed axis at point O. At the instant shown, 0 = 60°, 6 = 1.2 rad/s, 60.8 rad/s2, OA = 0.9 m, OA 0.5 m/s, and OA = -6 m/s2. Determine the magnitudes of the velocity and acceleration of joint A of the robot. Also, sketch the velocity and acceleration of A and determine the angles which these vectors make with the posi- tive x-axis. The base of the robot does not revolve %3D about a vertical axis. 1.1 m. 0.9 m 15° Parrow_forwardThe two rotor blades of 770-mm radius rotate about the shaft at O mounted in the sliding block. The acceleration of the block is aO = 5.2 m/s2. If θ˙θ˙ = 0 and θ¨θ¨ = 4.2 rad/s2 when θ = 0, find the magnitude of the acceleration of the tip A of the blade for this instant..arrow_forwardThe disk rotates about the shaft S, while the shaft is turning about the z axis at a rate of ωz = 5.5 rad/s , which is increasing at α = 2.5 rad/s2 . No slipping occurs. Determine the x, y, and z components of the velocity of point B on the disk at the instant shown using scalar notation. Determine the x, y, and z components of the acceleration of point B on the disk at the instant shown using scalar notation.arrow_forward
- An external drive system actuates the mechanism by applying a moment M at bearing D. At the instant 0 = 30°, the velocity of point C is 14 m (upward to the left) and the angular acceleration of link CD is 45 rad in the CCW direction. Determine the x-component of the velocity vector of point G in m at this instant. Consider L 4 metres. E B y M.arrow_forwardPravinbhaiarrow_forwardThe body is formed of slender rod and rotates about a fixed axis through point O. At time t = 0, the body is in the orientation 0 = 0 and has an angular velocity wo = 0.3 rad/s and a constant angular acceleration a = 0.8 rad/s². Determine the vectors of velocity and acceleration of point A at t = 1 s. Use d = 2r = 0.8 m. (√₁ = 0.106î + 1.240ŷ m/s, da -1.289 + 1.019ĵ m/s²) ω, α y = d x Aarrow_forward
- At the instant shown, rod CD has a constant clockwise angular velocity WCD- The collar at C is pin connected to CD and slides freely along AB. If the velocity of point Care 7c = 1.3 m/s, the relative velocity of C to A in the rotating coordinates (C/A)zy = (VC/A)zy (0.8667 -0.500) m/s, and the position vector C/A=0.73(0.8667-0.5007) m, -(0.73) (0.500) knowing that (vC/A)zy WAB 0.866 determine the angular velocity of link AB, WAB. [rad/s] (sign sensitive) 12 b W CD constantarrow_forwardConsider the portion of an excavator shown. At the instant under consideration, the hydraulic cylinder is extending at a rate of 7 in./sec, which is decreasing at the rate of 3 in./sec every second. Simultaneously, the cylinder is rotating about a horizontal axis through O at a constant rate of 14 deg/sec. Determine the velocity v and acceleration a of the clevis attachment at B.arrow_forwardThe two V-belt pulleys form an integral unit and rotate about the fixed axis at O. At a certain instant, point A on the belt of the smaller pulley with a distance of DA = 143 mm has a velocity VA = 2.8 m/s, and point B on the belt of the larger pulley with a distance of DB = 900 mm has an acceleration ag = 43 m/s? as shown. For this instant determine the magnitude of the acceleration ac of point C in m/s? if Rc = 374 mm. ав В DB UA Rc A DAarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY