Concept explainers
Interpretation:
The concentration of calcium ions in a sample of milk is to be determined and whether the given sample meets the concentrations, stated on a milk carton or not is to be predicted.
Concept Introduction:
For radioactive elements, the number of disintegrations per second is defined as an activity. Mathematically, it is represented as follows:
The activity is known to be proportional to the number of radioactive nuclei,
Here,
For the change in the number of nuclei per second:
The half-life for a first-order reaction is given as,
Want to see the full answer?
Check out a sample textbook solutionChapter 20 Solutions
EBK STUDENT SOLUTIONS MANUAL TO ACCOMPA
- Fluorine-18 is a radioactive isotope that decays by positron emission to form oxygen-18 with a half-life of 109.7 min. (A positron is a particle with the mass of an electron and a single unit of positive charge; the equation is F918O188+e+10 Physicians use 18F to study the brain by injecting a quantity of ?uoro-substituted glucose into the blood of a patient. The glucose accumulates in the regions where the brain is active and needs nourishment. (a) What is the rate constant for [lie decomposition of ?uorine-18? (b) If a sample of glucose containing radioactive fluorine-18 is injected into the blood, what percent of the radioactivity will remain after 5.59 h? (c) How long does it take for 99.99% of the 18F to decay?arrow_forwardThe isotope S3890r one of the extremely hazardous species in the residues from nuclear power generation. The strontium in a 0.500-g sample diminishes to 0.393 g in 10.0 y. Calculate the half-life.arrow_forwardWhat is the half-life for the first-order decay of phosphorus-32? (P1532S1632+e) The rate constant for the decay is 4.85102 day-1.arrow_forward
- The rate constant for the radioactive decay of 14C is 1.21104 year-1. The products of the decay are nitrogen atoms and electrons (beta particles): C614N714+e rate =k[C614] What is the instantaneous rate of production of N atoms in a sample with a carbon-14 content of 6.5109M?arrow_forwardCarbon-14 (C-14) with a half-life of 5730 years decays to nitrogen-14 (N-14). A sample of carbon dioxide containing carbon in the form of C-14 only is sealed in a vessel at 1.00-atmosphere pressure. Over time, the CO2 becomes NO2 through the radioactive decay process. The following equilibrium is established: 2NO2(g)N2O4(g) If the equilibrium constant for the equation as written is 1105 , what is the pressure of N2O4 after 20,000 years? Assume that the CO2 does not participate in any chemical reactions.arrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning