Concept explainers
(a)
The rotational speed of the armature of the generator.
(a)
Answer to Problem 97P
The rotational speed of the armature of the generator is
Explanation of Solution
Write the expression for motional emf.
Here,
Substitute,
Conclusion:
Substitute,
Therefore, the rotational speed of the armature of the generator is
(b)
The average torque and instantaneous torque applied by bicycle tire to the generator.
(b)
Answer to Problem 97P
The average torque applied by bicycle tire to the generator is
Explanation of Solution
Write the expression for average torque.
Here,
Conclusion:
Substitute,
Substitute,
Therefore, the average torque applied by bicycle tire to the generator is
(c)
The linear speed of the bicycle to supply emf of
(c)
Answer to Problem 97P
The linear speed of the bicycle to supply emf of
Explanation of Solution
Write the expression for the linear speed of the bicycle.
Here,
Conclusion:
Substitute,
Therefore, the linear speed of the bicycle to supply emf of
Want to see more full solutions like this?
Chapter 20 Solutions
Physics
- How many turns must be wound on a flat, circular coil of radius 20 cm in order to produce a magnetic field of magnitude 4.0105 T at the center of the coil when the current through it is 0.85 A?arrow_forwardA stiff spring with a spring constant of 1200.0 N/m is connected to a bar on a slide generator as shown in Figure P32.40. Assume the bar has length l = 60.0 cm and mass m = 0.75 kg, and it slides without friction. The bar connects to a U-shaped wire to form a loop that has width w = 40.0 cm and total resistance 25 and that sits in a uniform magnetic field B = 0.35 T. The bar is initially pulled 5.0 cm to the left and released so that it begins to oscillate. What is the induced current in the loop as a function of time, I(t)? (Ignore any effects due to the magnetic force on the oscillating bar.)arrow_forwardSolenoid A has length L and N turns, solenoid B has length 2L and N turns, and solenoid C has length L/2 and 2N turns. If each solenoid carries the same current, rank the magnitudes of the magnetic fields in the centers of the solenoids from largest to smallest.arrow_forward
- Consider the apparatus shown in Figure P30.32: a conducting bar is moved along two rails connected to an incandescent lightbulb. The whole system is immersed in a magnetic field of magnitude B = 0.400 T perpendicular and into the page. The distance between the horizontal rails is = 0.800 m. The resistance of the lightbulb is R = 48.0 , assumed to be constant. The bar and rails have negligible resistance. The bar is moved toward the right by a constant force of magnitude F = 0.600 N. We wish to find the maximum power delivered to the lightbulb. (a) Find an expression for the current in the lightbulb as a function of B, , R, and v, the speed of the bar. (b) When the maximum power is delivered to the lightbulb, what analysis model properly describes the moving bar? (c) Use the analysis model in part (b) to find a numerical value for the speed v of the bar when the maximum power is being delivered to the lightbulb. (d) Find the current in the lightbulb when maximum power is being delivered to it. (e) Using P = I2R, what is the maximum power delivered to the lightbulb? (f) What is the maximum mechanical input power delivered to the bar by the force F? (g) We have assumed the resistance of the lightbulb is constant. In reality, as the power delivered to the lightbulb increases, the filament temperature increases and the resistance increases. Does the speed found in part (c) change if the resistance increases and all other quantities are held constant? (h) If so, does the speed found in part (c) increase or decrease? If not, explain. (i) With the assumption that the resistance of the lightbulb increases as the current increases, does the power found in part (f) change? (j) If so, is the power found in part (f) larger or smaller? If not, explain. Figure P30.32arrow_forwardA rectangular coil consists of N = 100 closely wrapped turns and has dimensions a = 0.400 m and b = 0.300 m. The coil is hinged along the y axis, and its plane makes an angle = 30.0 with the x axis (Fig. P22.25). (a) What is the magnitude of the torque exerted on the coil by a uniform magnetic field B = 0.800 T directed in the positive x direction when the current is I = 1.20 A in the direction shown? (b) What is the expected direction of rotation of the coil? Figure P22.25arrow_forwardMass m = 1.00 kg is suspended vertically at rest by an insulating string connected to a circuit partially immersed in a magnetic field as in Figure P19.30. The magnetic field has magnitude Bin = 2.00 T and the length = 0.500 m. (a) Find the current I. (b) If = 115 V, find the required resistance R. Figure P19.30arrow_forward
- Sodium ions (Na+) move at 0.851 m/s through a blood-stream in the arm of a person standing near a large magnet. The magnetic field has a strength of 0.254 T and makes an angle of 51.0 with the motion of the sodium ions. The arm contains 100 cm3 of blood with a concentration of 3.00 1020 Na+ ions per cubic centimeter. If no other ions were present in the arm, what would be the magnetic force on the arm?arrow_forwardA wire carrying a current I is bent into the shape of an exponential spiral, r = e, from = 0 to = 2 as suggested in Figure P29.47. To complete a loop, the ends of the spiral are connected by a straight wire along the x axis. (a) The angle between a radial line and its tangent line at any point on a curve r = f() is related to the function by tan=rdr/d Use this fact to show that = /4. (b) Find the magnetic field at the origin. Figure P29.47arrow_forwardConsider the system pictured in Figure P28.26. A 15.0-cm horizontal wire of mass 15.0 g is placed between two thin, vertical conductors, and a uniform magnetic field acts perpendicular to the page. The wire is free to move vertically without friction on the two vertical conductors. When a 5.00-A current is directed as shown in the figure, the horizontal wire moves upward at constant velocity in the presence of gravity. (a) What forces act on the horizontal wire, and (b) under what condition is the wire able to move upward at constant velocity? (c) Find the magnitude and direction of the minimum magnetic Field required to move the wire at constant speed. (d) What happens if the magnetic field exceeds this minimum value? Figure P28.26arrow_forward
- A conducting rod of length = 65.0 cm is free to slide on two parallel conducting bars as shown in the figure below. Two resistors R1 = 6.00 Q and R2 = 9.00 Q are connected across the ends of the bars to form a loop. A constant magnetic field B = 10.0 T is directed perpendicularly into the page. An external agent pulls the rod to the left with a constant speed of v = 4.00 m/s. * x x × in R R2 х х х х a) What is the magnitude and direction (positive terminal upward or positive terminal downward) of the emf induced in the moving rod? Think about which direction current will flow on the rod and remember current flows out of the positive end of a battery. b) Calculate the magnitude and direction (upward or downward) of the induced currents through each of two the resistors. c) Calculate the total power delivered to the resistors in the circuit. d) What is the magnitude of the external force required to keep the bar moving to the left at the constant speed of 4.00 m/s?arrow_forwardA stationary square coil of area 0.1 m² is brought into the magnetic field 3.4 T with its plane perpendicular to the magnetic field. The coil has 1960 turns. Calculate the time required to bring the coil in the field to generate electromotive force of 5 V. Give your answer in SI units.arrow_forwardA 100-turn coil has a radius of 4.48 cm and a resistance of 26.6 Ω. The coil is in a uniform magnetic field that is perpendicular to the plane of the coil. What rate of change of the magnetic field strength will induce a current of 4.52 A in the coil?arrow_forward
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning