Concept explainers
(a)
The time taken by the current to reach
(a)
Answer to Problem 58P
The time taken by the current to reach
Explanation of Solution
Write the equation for the current in a
Here,
Write the equation for the time constant of a
Here,
Given that the value of the current is
Put equations (II) and (III) in equation (I) and rewrite the equation for
Conclusion:
Given that the value of the inductance is
Substitute
Therefore, the time taken by the current to reach
(b)
The maximum energy stored in the conductor.
(b)
Answer to Problem 58P
The maximum energy stored in the conductor is
Explanation of Solution
Write the equation for the magnetic energy stored in an inductor.
Here,
The maximum energy will be stored in the inductor when the current flowing through it is maximum.
Write the equation for the maximum current.
Here,
Put the above equation in equation (V).
Conclusion:
Given that the potential difference of the battery is
Substitute
Therefore, the maximum energy stored in the conductor is
(c)
The time taken for the energy stored in the inductor to reach
(c)
Answer to Problem 58P
The time taken for the energy stored in the inductor to reach
Explanation of Solution
According to equation (V), the energy stored is proportional to the square of the current. Apply this on equation (I) to determine the expression for the instantaneous energy stored in the inductor.
Here,
Given that the value of the energy stored is
Put the above equation in equation (VII) and rewrite it for
Put equation (II) in the above equation.
Conclusion:
Substitute
The negative root has no meaning since time is greater than or equal to zero.
The time calculated is more than the result of part (a). This is because energy stored in the inductor is proportional to the square of the current and it takes longer for the square of the current to be
Therefore, the time taken for the energy stored in the inductor to reach
Want to see more full solutions like this?
Chapter 20 Solutions
Physics
- Solve and answer the question correctly please. Thank you!!arrow_forwardSolve and answer the question correctly please. Thank you!!arrow_forwardA spiral transition curve is used on railroads to connect a straight portion of the track with a curved portion. (Figure 1) Part A v = v₁ft/s 600 ft y = (106) x³ If the spiral is defined by the equation y = (106)³, where x and y are in feet, determine the magnitude of the acceleration of a train engine moving with a constant speed of v₁ = 30 ft/s when it is at point x = 600 ft. Express your answer to three significant figures and include the appropriate units. ? a = Value Unitsarrow_forward
- When the motorcyclist is at A, he increases his speed along the vertical circular path at the rate of = (0.3t) ft/s², where t is in seconds. Take p = 360 ft. (Figure 1) Part A 60° Ρ B If he starts from rest at A, determine the magnitude of his velocity when he reaches B. Express your answer to three significant figures and include the appropriate units. v = Value Submit Request Answer ་ Part B ? Units If he starts from rest at A, determine the magnitude of his acceleration when he reaches B. Express your answer to three significant figures and include the appropriate units. 11 ? a = Value Unitsarrow_forwardThe car starts from rest at s = 0 and increases its speed at a₁ = 7 m/s². (Figure 1) Part A = 40 m Determine the time when the magnitude of acceleration becomes 20 m/s². Express your answer to three significant figures and include the appropriate units. ? t = Value Units Part B At what position s does this occur? Express your answer to three significant figures and include the appropriate units. s = Value Submit Request Answer ? Unitsarrow_forwardSolve and answer the question correctly please. Thank you!!arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON