
Concept explainers
(a)
The time taken by the current to reach
(a)

Answer to Problem 58P
The time taken by the current to reach
Explanation of Solution
Write the equation for the current in a
Here,
Write the equation for the time constant of a
Here,
Given that the value of the current is
Put equations (II) and (III) in equation (I) and rewrite the equation for
Conclusion:
Given that the value of the inductance is
Substitute
Therefore, the time taken by the current to reach
(b)
The maximum energy stored in the conductor.
(b)

Answer to Problem 58P
The maximum energy stored in the conductor is
Explanation of Solution
Write the equation for the magnetic energy stored in an inductor.
Here,
The maximum energy will be stored in the inductor when the current flowing through it is maximum.
Write the equation for the maximum current.
Here,
Put the above equation in equation (V).
Conclusion:
Given that the potential difference of the battery is
Substitute
Therefore, the maximum energy stored in the conductor is
(c)
The time taken for the energy stored in the inductor to reach
(c)

Answer to Problem 58P
The time taken for the energy stored in the inductor to reach
Explanation of Solution
According to equation (V), the energy stored is proportional to the square of the current. Apply this on equation (I) to determine the expression for the instantaneous energy stored in the inductor.
Here,
Given that the value of the energy stored is
Put the above equation in equation (VII) and rewrite it for
Put equation (II) in the above equation.
Conclusion:
Substitute
The negative root has no meaning since time is greater than or equal to zero.
The time calculated is more than the result of part (a). This is because energy stored in the inductor is proportional to the square of the current and it takes longer for the square of the current to be
Therefore, the time taken for the energy stored in the inductor to reach
Want to see more full solutions like this?
Chapter 20 Solutions
Physics
- Two conductors having net charges of +14.0 µC and -14.0 µC have a potential difference of 14.0 V between them. (a) Determine the capacitance of the system. F (b) What is the potential difference between the two conductors if the charges on each are increased to +196.0 µC and -196.0 µC? Varrow_forwardPlease see the attached image and answer the set of questions with proof.arrow_forwardHow, Please type the whole transcript correctly using comma and periods as needed. I have uploaded the picture of a video on YouTube. Thanks,arrow_forward
- A spectra is a graph that has amplitude on the Y-axis and frequency on the X-axis. A harmonic spectra simply draws a vertical line at each frequency that a harmonic would be produced. The height of the line indicates the amplitude at which that harmonic would be produced. If the Fo of a sound is 125 Hz, please sketch a spectra (amplitude on the Y axis, frequency on the X axis) of the harmonic series up to the 4th harmonic. Include actual values on Y and X axis.arrow_forwardSketch a sign wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forwardSketch a sine wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forward
- The drawing shows two long, straight wires that are suspended from the ceiling. The mass per unit length of each wire is 0.050 kg/m. Each of the four strings suspending the wires has a length of 1.2 m. When the wires carry identical currents in opposite directions, the angle between the strings holding the two wires is 20°. (a) Draw the free-body diagram showing the forces that act on the right wire with respect to the x axis. Account for each of the strings separately. (b) What is the current in each wire? 1.2 m 20° I -20° 1.2 marrow_forwardplease solve thisarrow_forwardplease solve everything in detailarrow_forward
- 6). What is the magnitude of the potential difference across the 20-02 resistor? 10 Ω 11 V - -Imm 20 Ω 10 Ω 5.00 10 Ω a. 3.2 V b. 7.8 V C. 11 V d. 5.0 V e. 8.6 Varrow_forward2). How much energy is stored in the 50-μF capacitor when Va - V₁ = 22V? 25 µF b 25 µF 50 µFarrow_forward9). A series RC circuit has a time constant of 1.0 s. The battery has a voltage of 50 V and the maximum current just after closing the switch is 500 mA. The capacitor is initially uncharged. What is the charge on the capacitor 2.0 s after the switch is closed? R 50 V a. 0.43 C b. 0 66 C c. 0.86 C d. 0.99 C Carrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON





