Physical Science (12th Edition), Standalone Book
12th Edition
ISBN: 9781260150544
Author: Bill W. Tillery
Publisher: McGraw Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 20, Problem 7PEA
To determine
To find: The gradient of the stream.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Shrinking Loop. A circular loop of flexible iron wire has an initial circumference of 161 cm , but its circumference is decreasing at a constant rate of 15.0 cm/s due to a tangential pull on the wire. The loop is in a constant uniform magnetic field of magnitude 1.00 T , which is oriented perpendicular to the plane of the loop. Assume that you are facing the loop and that the magnetic field points into the loop. Find the magnitude of the emf E induced in the loop after exactly time 9.00 s has passed since the circumference of the loop started to decrease. Find the direction of the induced current in the loop as viewed looking along the direction of the magnetic field. Please explain all steps
A circular loop of wire with radius 0.0480 m and resistance 0.163 Ω is in a region of spatially uniform magnetic field, as shown in the following figure (Figure 1). The magnetic field is directed out of the plane of the figure. The magnetic field has an initial value of 7.88 T and is decreasing at a rate of -0.696 T/s . Is the induced current in the loop clockwise or counterclockwise? What is the rate at which electrical energy is being dissipated by the resistance of the loop? Please explain all steps
A 0.333 m long metal bar is pulled to the left by an applied force F and moves to the left at a constant speed of 5.90 m/s. The bar rides on parallel metal rails connected through a 46.7 Ω resistor, as shown in (Figure 1), so the apparatus makes a complete circuit. You can ignore the resistance of the bar and rails. The circuit is in a uniform 0.625 T magnetic field that is directed out of the plane of the figure. Is the induced current in the circuit clockwise or counterclockwise? What is the rate at which the applied force is doing work on the bar? Please explain all steps
Chapter 20 Solutions
Physical Science (12th Edition), Standalone Book
Ch. 20 -
1. Small changes that result in the breaking up,...Ch. 20 -
2. The process of physically removing weathered...Ch. 20 -
3. Muddy water rushing downstream after a heavy...Ch. 20 -
4. The physical breakup of rocks without any...Ch. 20 -
5. Chemical weathering, the dissolving or...Ch. 20 -
6. The process of peeling off layers of rock,...Ch. 20 - Prob. 7ACCh. 20 -
8. A mixture of unconsolidated weathered earth...Ch. 20 -
9. Decay-resistant, altered organic material...Ch. 20 -
10. Two minerals that usually remain after...
Ch. 20 -
11. Weathered materials move to lower elevations...Ch. 20 -
12. The slow movement downhill of soil on the...Ch. 20 -
13. The wide, level floor of a valley built by a...Ch. 20 -
14. The deposit at the mouth of a river where...Ch. 20 -
15. Rock fragments frozen in moving glacier ice...Ch. 20 -
16. The agent that has the least ability to...Ch. 20 - Prob. 17ACCh. 20 - Prob. 18ACCh. 20 -
19. What is the pH of natural rainwater?
a. 5.0...Ch. 20 -
20. Freezing water exerts pressure on the wall...Ch. 20 -
21. Of the following rock weathering events, the...Ch. 20 -
22. Which of the following would have the...Ch. 20 -
23. Broad meanders on a very wide, gently sloping...Ch. 20 - Prob. 24ACCh. 20 -
25. A likely source of loess is
a. rock...Ch. 20 -
26. The landscape in a dry climate tends to be...Ch. 20 -
27. Peneplains and monadnocks are prevented from...Ch. 20 -
28. The phrase weathering of rocks means
a. able...Ch. 20 -
29. What are you doing to a rock if you pick up...Ch. 20 -
30. What are you doing to the fragments of a...Ch. 20 -
31. What are you doing to a rock if you dissolve...Ch. 20 - Prob. 32ACCh. 20 -
33. The soil called loam is
a. all sand and...Ch. 20 -
34. A moraine is a
a. wind deposit.
b. glacier...Ch. 20 -
35. The breaking up, crumbling, chemical...Ch. 20 -
36. Crushing of rock at a quarry to make...Ch. 20 -
37. Fragments of rocks fall into a mountain...Ch. 20 -
38. Tree roots grow and expand, and eventually...Ch. 20 -
39. Damage to the Lincoln Memorial by rain and...Ch. 20 -
40. Ferromagnesian minerals will react with...Ch. 20 -
41. You are planning a garden and need a soil...Ch. 20 - Prob. 42ACCh. 20 -
43. The most extensive glaciers in the United...Ch. 20 -
44. Continental glaciers are found...Ch. 20 -
45. An example of a chemical weathering process...Ch. 20 - Prob. 1QFTCh. 20 -
2. Granite is the most common rock found on...Ch. 20 -
3. What other erosion processes are important as...Ch. 20 -
4. Describe three ways in which a river erodes...Ch. 20 - Prob. 5QFTCh. 20 - Prob. 6QFTCh. 20 -
7. What is a glacier? How does a glacier erode...Ch. 20 -
8. What is rock flour and how is it produced?
Ch. 20 -
9. Could a glacier erode the land lower than sea...Ch. 20 -
10. Explain why glacial erosion produces a...Ch. 20 - Prob. 11QFTCh. 20 - Prob. 12QFTCh. 20 -
13. What essential condition must be met before...Ch. 20 -
14. Compare the features caused by stream...Ch. 20 -
15. Compare the materials deposited by streams,...Ch. 20 -
16. Why do certain stone buildings tend to...Ch. 20 - Prob. 17QFTCh. 20 -
18. Discuss all the reasons you can in favor of...Ch. 20 - Prob. 1FFACh. 20 -
2. Speculate whether the continents will ever be...Ch. 20 - Prob. 3FFACh. 20 - Prob. 1PEACh. 20 - Prob. 2PEACh. 20 - Prob. 3PEACh. 20 - Prob. 4PEACh. 20 - Prob. 5PEACh. 20 - Prob. 6PEACh. 20 - Prob. 7PEACh. 20 - Prob. 8PEACh. 20 - Prob. 9PEACh. 20 - Prob. 10PEACh. 20 - Prob. 11PEACh. 20 - Prob. 12PEACh. 20 - Prob. 13PEACh. 20 - Prob. 14PEACh. 20 - Prob. 15PEACh. 20 - Prob. 1PEBCh. 20 -
2. The average rate of chemical weathering of...Ch. 20 -
3. A slope is creeping at a rate of 1.2 mm/yr. A...Ch. 20 - Prob. 4PEBCh. 20 - Prob. 5PEBCh. 20 - Prob. 6PEBCh. 20 -
7. The elevation of a streambed is surveyed near...Ch. 20 -
8. Each year, sheet erosion removes 0.9 mm of...Ch. 20 - Prob. 9PEBCh. 20 - Prob. 10PEBCh. 20 -
11. The discharge (Q) of a stream is the velocity...Ch. 20 -
12. What is the velocity (v) of a stream with a...Ch. 20 - Prob. 13PEBCh. 20 -
14. A 1998 survey of glacial end moraines...Ch. 20 -
15. Rates of tectonic uplift can be determined...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 0.850-m-long metal bar is pulled to the right at a steady 5.0 m/s perpendicular to a uniform, 0.650-T magnetic field. The bar rides on parallel metal rails connected through a 25-Ω, resistor (Figure 1), so the apparatus makes a complete circuit. Ignore the resistance of the bar and the rails. Calculate the magnitude of the emf induced in the circuit. Find the direction of the current induced in the circuit. Calculate the current through the resistor.arrow_forwardIn the figure, a conducting rod with length L = 29.0 cm moves in a magnetic field B→ of magnitude 0.510 T directed into the plane of the figure. The rod moves with speed v = 5.00 m/s in the direction shown. When the charges in the rod are in equilibrium, which point, a or b, has an excess of positive charge and where does the electric field point? What is the magnitude E of the electric field within the rod, the potential difference between the ends of the rod, and the magnitude E of the motional emf induced in the rod? Which point has a higher potential? Please explain all stepsarrow_forwardExamine the data and % error values in Data Table 2 where the mass of the pendulum bob increased but the angular displacement and length of the simple pendulum remained constant. Describe whether or not your data shows that the period of the pendulum depends on the mass of the pendulum bob, to within a reasonable percent error.arrow_forward
- Please graph, my software isn't working - Data Table 4 of Period, T vs √L . (Note: variables are identified for graphing as y vs x.) On the graph insert a best fit line or curve and display the equation on the graph. Thank you!arrow_forwardI need help with problems 93 and 94arrow_forwardSince the instruction says to use SI units with the correct sig-fig, should I only have 2 s for each trial in the Period column? Determine the theoretical period of the pendulum using the equation T= 2π √L/g using the pendulum length, L, from Data Table 2. Calculate the % error in the periods measured for each trial in Data Table 2 then recordarrow_forward
- A radiography contingent are carrying out industrial radiography. A worker accidentally crossed a barrier exposing themselves for 15 seconds at a distance of 2 metres from an Ir-192 source of approximately 200 Bq worth of activity. What dose would they have received during the time they were exposed?arrow_forwardIn the following figure the circuit to the left has a switch thatat t = 0 s is switched and disconnects the battery from the circuit. The state depicted on thefigure is right after the switch, still t = 0. As the current decreases over time, the magneticflux through the circuit on the right (due to the long cable of the circuit on the left) changesand induces an EMF on the right circuit. How much power is consumed by R2 as a functionof time.The distance between the wire on the left and the closest wire on the right is r = 2.0 cm.The size of the circuit on the right is noted on the figure.arrow_forwardsingly A samply ionized helium atom is in the ground state. It absorbs energy and makes a transition to the n=7 excited state. The ion returns to wo the wavelength the ground state by emitting SIX photons ONLY. What is the of the second highest energy photon ?arrow_forward
- An electron, traveling at a speed of 5.60x10° m/s, strikes the target of an X-ray tube. Upon impart, the eletion decelerates to one-third of it's original speed, with an X-ray photon being emitted in the process. What is the wavelength of the photon? m.arrow_forwardCan you help me solve this 2 question and teach me what we use to solve thisarrow_forwardYou are working during the summer at a company that builds theme parks. The company is designing an electromagnetic propulsion system for a new roller coaster. A model of a substructure of the device appears in the figure below. Two parallel, horizontal rails extend from left to right, with one rail behind the other. A cylindrical rod rests on top of and perpendicular to the rails at their left ends. The distance between the rails is d and the length of the rails is L. The magnetic field vector B points vertically down, perpendicular to the rails. Within the rod, the current I flows out of the page, from the rail in the back toward the rail in the front. The rod is of length d = 1.00 m and mass m = 0.700 kg. The rod carries a current I = 100 A in the direction shown and rolls along the rails of length L = 20.0 m without slipping. The entire system of rod and rails is immersed in a uniform downward-directed magnetic field with magnitude B = 2.30 T. The electromagnetic force on the rod…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
A Level Physics – Ideal Gas Equation; Author: Atomi;https://www.youtube.com/watch?v=k0EFrmah7h0;License: Standard YouTube License, CC-BY