Essential University Physics
4th Edition
ISBN: 9780134988566
Author: Wolfson, Richard
Publisher: Pearson Education,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 20, Problem 76P
A semicircular loop of radius a carries positive charge Q distributed uniformly. Find the electric field at the loop’s center (point P in Fig. 20.36). (Hint: Divide the loop into charge elements dq as shown, write dq in terms of the angle dθ, then integrate over θ.)
FIGURE 20.36 Problem 76
Expert Solution & Answer
Learn your wayIncludes step-by-step video
schedule06:38
Students have asked these similar questions
What must the charge (sign and magnitude) of a 3.45 gg particle be for it to remain stationary when placed in a downward-directed electric field of magnitude 530 N/C?
Express your answer in microcoulombs.
Two identical conducting spheres each having a radius of 0.500 cm are connected by a light 2.00-m-long conducting wire. Determine the tension in the wire if 30.0 µC is placed on one of the conductors. (Hint: Assume that the surface distribution of charge on each sphere is uniform.)
Asap plxxxx
Chapter 20 Solutions
Essential University Physics
Ch. 20.1 - The proton is a composite particle composed of...Ch. 20.2 - Charge q1 is located at x = 1 m, y = 0. What...Ch. 20.3 - A positive point charge is located at the origin...Ch. 20.4 - Far from a charge distribution, you measure an...Ch. 20.5 - An electron, a proton, a deuteron (a neutron...Ch. 20 - Conceptual Example 20.1 shows that the...Ch. 20 - A free neutron is unstable and soon decays to...Ch. 20 - Where in Fig. 20.5 could you put a third charge so...Ch. 20 - Equation 20.3 gives the electric field of a point...Ch. 20 - Is the electric force on a charged particle always...
Ch. 20 - Why does a dipole, which has no net charge,...Ch. 20 - The ring in Example 20.6 carries total charge Q,...Ch. 20 - A spherical balloon is initially uncharged. If you...Ch. 20 - Why should there be a force between two dipoles,...Ch. 20 - Dipoles A and B are both located in the field of a...Ch. 20 - Suppose the electron and proton charges differed...Ch. 20 - A typical lightning flash delivers about 25 C of...Ch. 20 - Protons and neutrons are made from combinations of...Ch. 20 - Earth carries a net charge of about 5 105 C. How...Ch. 20 - As they fly, honeybees may acquire electric...Ch. 20 - The electron and proton in a hydrogen atom are...Ch. 20 - An electron at Earths surface experiences a...Ch. 20 - You break a piece of Styrofoam packing material,...Ch. 20 - A charge q is at the point x = 1 m, y = 0 m. Write...Ch. 20 - A proton is at the origin and an electron is at...Ch. 20 - An electron experiences an electric force of 0.61...Ch. 20 - Find the magnitude of the electric force on a...Ch. 20 - A 68-nC charge experiences a 150-mN force in a...Ch. 20 - The electric field inside a cell membrane is 8.0...Ch. 20 - A 1.0-C charge experiences a 10-N electric force...Ch. 20 - The electron in a hydrogen atom is 52.9 pm from...Ch. 20 - In Fig. 20.28, point P is midway between the two...Ch. 20 - The water molecule’s dipole moment is 6.17 × 10–30...Ch. 20 - The electric field 22 cm from a long wire carrying...Ch. 20 - Find the line charge density on a long wire if the...Ch. 20 - Find the magnitude of the electric field due to a...Ch. 20 - In his famous 1909 experiment that demonstrated...Ch. 20 - How strong an electric field is needed to...Ch. 20 - A proton moving to the right at 3.8l05m/s enters a...Ch. 20 - An electrostatic analyzer like that of Example...Ch. 20 - Example 20.2: Charge on raindrops vary widely in...Ch. 20 - Example 20.2: Suppose that all three raindrops in...Ch. 20 - Example 20.2: (a) Repeat Example 20.2 to find the...Ch. 20 - Example 20.2: (a) Use calculus to show that the...Ch. 20 - Example 20.7: A 1.00-km length of power line...Ch. 20 - Example 20.7: A uniformly charged wire is 2.18 m...Ch. 20 - Example 20.7: A thin rod of length L lies on the...Ch. 20 - Example 20.7: A thin rod of length L lies on the...Ch. 20 - Two charges, one whose magnitude is twice as large...Ch. 20 - A proton is on the x-axis at x = 1.6 nm. An...Ch. 20 - A charge 3q is at the origin, and a charge 2q is...Ch. 20 - A negative charge q lies midway between two...Ch. 20 - In Fig. 20.29, take q1 = 68 C, q2 = 34 C, and q3 =...Ch. 20 - FIGURE 20.20 Problems 44 and 45 45. In Fig. 20.29,...Ch. 20 - DNA fragments introduced into an electrophoresis...Ch. 20 - A proton is at the origin and an ion is at x = 5.0...Ch. 20 - Four equal charges Q are at the comers of a square...Ch. 20 - A dipole lies on the y-axis and consists of an...Ch. 20 - Show that the field on the x-axis for the dipole...Ch. 20 - Youre 1.44 m from a charge distribution that is...Ch. 20 - Three identical charges q form an equilateral...Ch. 20 - Two identical small metal spheres initially carry...Ch. 20 - Two 38.0-C charges are attached to opposite ends...Ch. 20 - A positive charge Q is located at the origin, and...Ch. 20 - An electron is moving in a circular path around a...Ch. 20 - Find the line charge density on a long wire if a...Ch. 20 - A dipole with dipole moment 1.5 nCm is oriented at...Ch. 20 - You have a job examining patent applications....Ch. 20 - A 5.0-m strand of DNA carries charge +e per nm of...Ch. 20 - Heating in a microwave oven occurs as water...Ch. 20 - A dipole with charges q and separation 2a is...Ch. 20 - Youre taking physical chemistry, and your...Ch. 20 - The electric field on the axis of a uniformly...Ch. 20 - An electric quadrupole consists of two oppositely...Ch. 20 - Four charges lie at the corners of a square of...Ch. 20 - A straight wire 10 m long carries 25 C distributed...Ch. 20 - Two thin rods, each of length a, lie along the...Ch. 20 - Figure 20.35 shows a thin, uniformly charged disk...Ch. 20 - Use the result of Problem 73 to show that the...Ch. 20 - Use the binomial theorem to show that, for x R,...Ch. 20 - A semicircular loop of radius a carries positive...Ch. 20 - A thin rod carries charge Q distributed uniformly...Ch. 20 - A thin rod extends along the x-axis from x = 0 to...Ch. 20 - Youre working on the design of an ink-jet printer....Ch. 20 - BIO The human heart consists largely of elongated...Ch. 20 - At a given distance, far from the heart compared...Ch. 20 - The difference between Figs. 20.38a and 20.38b...Ch. 20 - At the instant shown in Fig. 20.38c, theres an...
Additional Science Textbook Solutions
Find more solutions based on key concepts
What is the reducing agent in the following reaction?
2 Br –– (aq) + H2 O2 (aq) + 2 H+ (aq) → Br2 (aq) + 2 H2 ...
Chemistry: The Central Science (14th Edition)
What is the difference between cellular respiration and external respiration?
Human Physiology: An Integrated Approach (8th Edition)
The number of named species is about ________, but the actual number of species on Earth is estimated to be abo...
Biology: Life on Earth with Physiology (11th Edition)
17. A speed skater moving to the left across frictionless ice at 8.0 m/s hits a 5.0-m-wide patch of rough ice....
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Community 1 contains 100 individuals distributed among four species: 5A, 5B, 85C, and 5D Community 2 contains 1...
Campbell Biology in Focus (2nd Edition)
With what geologic feature are the earthquakes in the mid-Atlantic associated?
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- aA plastic rod of length = 24.0 cm is uniformly charged with a total charge of +12.0 C. The rod is formed into a semicircle with its center at the origin of the xy plane (Fig. P24.34). What are the magnitude and direction of the electric field at the origin? Figure P24.34arrow_forward(a) Find the total electric field at x = 1.00 cm in Figure 18.52(b) given that q =5.00 nC. (b) Find the total electric field at x = 11.00 cm in Figure 18.52(b). (c) If the charges are allowed to move and eventually be brought to rest by friction, what will the final charge configuration be? (That is, will there be a single charge, double charge; etc., and what will its value(s) he?)arrow_forwardTwo small spherical conductors are suspended from light-weight vertical insulating threads. The conductors are brought into contact (Fig. P23.50, left) and released. Afterward, the conductors and threads stand apart as shown at right. a. What can you say about the charge of each sphere? b. Use the data given in Figure P23.50 to find the tension in each thread. c. Find the magnitude of the charge on each sphere. Figure P23.50arrow_forward
- Is it possible for a conducting sphere of radius 0.10 m to hold a charge of 4.0 C in air? The minimum field required to break down air and turn it into a conductor is 3.0 106 N/C.arrow_forwardTwo identical conducting spheres each having a radius of 0.500 cm are connected by a light 2.20 m long conducting wire. A charge of 56.0 µC is placed on one of the conductors. Assume the surface distribution of charge on each sphere is uniform. Determine the tension in the wire.arrow_forwardÎ 0° 0° In the figure above, 0 = 25 degrees. A plastic rod is bent into a circular shape spanning 130 degrees. The radius of the circular shape is 55 cm, and a total charge of 9.0 nC is uniformly distributed over the wire. Determine the magnitude of the electric field at the origin.arrow_forward
- pls answer no 1, the needs in the solution are vector diagram, e calculation, ey and ex calculations, enet calculation and final answer. pls answer in paperarrow_forwardPlease answer the questionarrow_forwardIn a thunderstorm, charge builds up on the water droplets or ice crystals in a cloud. Thus, the charge can be considered to be distributed uniformly throughout the cloud. For the purposes of this problem, take the cloud to be a sphere of diameter 1.00 kilometer. The point of this problem is to estimate the maximum amount of charge that this cloud can contain, assuming that the charge builds up until the electric field at the surface of the cloud reaches the value at which the surrounding air breaks down. This breakdown means that the air becomes highly ionized, enabling it to conduct the charge from the cloud to the ground or another nearby cloud. The ionized air will then emit light due to the recombination of the electrons and atoms to form excited molecules that radiate light. In addition, the large current will heat up the air, resulting in its rapid expansion. These two phenomena account for the appearance of lightning and the sound of thunder. Take the breakdown electric field of…arrow_forward
- A point charge is placed at each corner of a square with side length a. The charges all have the same magnitude q. Two of the charges are positive and two are neg- ative, as shown in Fig. E21.30. What is the direction of the net electric field at the center of the square due to the four charges, and what is its magnitude in terms of q and a?arrow_forwardAn electron, starting from rest, is accelerated by a uniform electric field of 9.00 × 104 N/C that extends over a distance of 4.00 cm. What is the speed of the electron when it leaves the region of the uniform electric field?arrow_forwardIn problem 21.96 of your book, University Physics 15th edition (see End of the Chapter 21 section), what is the magnitude of the electric field (in N/C)? (Don't use scientific notation for expressing a very small or very large number)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY