Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 20, Problem 76GP
To determine
The electrical power saved in the ideal air conditioner.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(1) An incandescent light bulb produces 5.85 Joules of light energy each second. This bulb is 7.80%
efficient, meaning that only 7.80% the total energy it consumes becomes light and the rest becomes waste
heat. A 12.0 W fluorescent bulb is designed to produce the same illumination (in Joules of light energy
per second) as the incandescent bulb. A large building uses 17,530 light bulbs. At a cost of 8.56€/kW-hr
for electricity, how much money will the owners of the building save each year if they use fluorescent
bulbs instead of incandescent bulbs? Express your answer in dollars. [answer: about $828,000]
An incandescent lightbulb is an inexpensive but highly inefficient device that converts electrical energy into light. It converts about 10 percent of the electrical energy it consumes into light while converting the remaining 90 percent into heat. The glass bulb of the lamp heats up very quickly as a result of absorbing all that heat and dissipating it to the surroundings by convection and radiation. Consider an 8-cm-diameter 60-W lightbulb in a room at 25°C. The emissivity of the glass is 0.9. Assuming that 10 percent of the energy passes through the glass bulb as light with negligible absorption and the rest of the energy is absorbed and dissipated by the bulb itself by natural convection and radiation, determine the equilibrium temperature of the glass bulb. Assume the interior surfaces of the room to be at room temperature.
To heat a room with dimensions width a=3 m, length b=5 m, height h=2,2 m, approximately an electrical power of P=10 W per square meter is needed. At a cost of 0.2 soles per kW.h, how much will it cost per day to use this heater?
Chapter 20 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 20.2 - An adiabatic process is defined as one in which no...Ch. 20.3 - A motor is running with an intake temperature TH =...Ch. 20.6 - A 1.00.kg piece of ice at 0C melts very slowly to...Ch. 20.9 - Prob. 1EECh. 20 - Prob. 1QCh. 20 - Can you warm a kitchen in winter by leaving the...Ch. 20 - Would a definition of heat engine efficiency as e...Ch. 20 - What plays the role of high-temperature and...Ch. 20 - Which will give the greater improvement in the...Ch. 20 - The oceans contain a tremendous amount of thermal...
Ch. 20 - Discuss the factors that keep real engines from...Ch. 20 - Prob. 8QCh. 20 - Describe a process in nature that is nearly...Ch. 20 - (a) Describe how heat could be added to a system...Ch. 20 - Suppose a gas expands to twice its original volume...Ch. 20 - Give three examples, other than those mentioned in...Ch. 20 - Which do you think has the greater entropy, 1 kg...Ch. 20 - (a) What happens if you remove the lid of a bottle...Ch. 20 - Prob. 15QCh. 20 - Prob. 16QCh. 20 - Prob. 17QCh. 20 - The first law of thermodynamics is sometimes...Ch. 20 - Powdered milk is very slowly (quasistatically)...Ch. 20 - Two identical systems are taken from state a to...Ch. 20 - It can he said that the total change in entropy...Ch. 20 - Use arguments, other than the principle of entropy...Ch. 20 - (I) A heat engine exhausts 7800 J of heat while...Ch. 20 - (I) A certain power plant puts out 580 MW of...Ch. 20 - (II) A typical compact car experiences a total...Ch. 20 - (II) A four-cylinder gasoline engine has an...Ch. 20 - (II) The burning of gasoline in a car releases...Ch. 20 - (II) Figure 2017 is a PV diagram for a reversible...Ch. 20 - (III) The operation of a diesel engine can be...Ch. 20 - (I) What is the maximum efficiency of a heat...Ch. 20 - (I) It is not necessary that a heat engines hot...Ch. 20 - (II) A heal engine exhausts its heat at 340C and...Ch. 20 - (II) (a) Show that the work done by a Carnot...Ch. 20 - (II) A Carnot engines operating temperatures are...Ch. 20 - (II) A nuclear power plant operates at 65% of its...Ch. 20 - (II) A Carnot engine performs work at the rate of...Ch. 20 - (II) Assume that a 65 kg hiker needs 4.0 103 kcal...Ch. 20 - (II) A particular car does work at the rate of...Ch. 20 - (II) A heat engine utilizes a heat source at 580C...Ch. 20 - (II) The working substance of a certain Carnot...Ch. 20 - (III) A Carnot cycle, shown in Fig. 20-7, has the...Ch. 20 - (III) One mole of monatomic gas undergoes a Carnot...Ch. 20 - (III) In an engine that approximates the Otto...Ch. 20 - (I) If an ideal refrigerator keeps its contents at...Ch. 20 - (I) The low temperature of a freezer cooling coil...Ch. 20 - (II) An ideal (Carnot) engine has an efficiency of...Ch. 20 - (II) An ideal heal pump is used to maintain the...Ch. 20 - (II) A restaurant refrigerator has a coefficient...Ch. 20 - (II) A heat pump is used to keep a house warm at...Ch. 20 - (II) (a) Given that the coefficient of performance...Ch. 20 - (II) A Carnot refrigerator (reverse of a Carnot...Ch. 20 - (II) A central heat pump updating as an air...Ch. 20 - (II) What volume of water at 0C can a freezer make...Ch. 20 - (I) What is the change in entropy of 250g of steam...Ch. 20 - (I) A 7.5-kg box having an initial speed of 4.0m/s...Ch. 20 - (I) What is the change in entropy of 1.00 m3 of...Ch. 20 - (II) If 1.00m3 of water at 0C is frozen and cooled...Ch. 20 - (II) If 0.45kg f water at 100C is changed by a...Ch. 20 - (II) An aluminum rod conducts 9.50 cal/s from a...Ch. 20 - (II) A 2.8-kg piece of aluminum at 43.0C is placed...Ch. 20 - (II) An ideal gas expands isothermally (T = 410 K)...Ch. 20 - (II) When 2.0 kg of water at 12.0C is mixed with...Ch. 20 - (II) (a) An ice cube of mass m at 0C is placed in...Ch. 20 - (II) The temperature of 2.0mol of an ideal...Ch. 20 - (II) Calculate the change in entropy of 1.00kg of...Ch. 20 - (II) An ideal gas of n moles undergoes the...Ch. 20 - (II) Two samples of an ideal gas are initially at...Ch. 20 - (II) A 150-g insulated aluminum cup at 15C is...Ch. 20 - (II) (a) Why would you expect the total entropy...Ch. 20 - (II) 1.00 mole of nitrogen (N2) gas and 1.00 mole...Ch. 20 - (II) Thermodynamic processes are sometimes...Ch. 20 - (III) The specific heat per mole of potassium at...Ch. 20 - (III) Consider an ideal gas of n moles with molar...Ch. 20 - (III) A general theorem states that the amount of...Ch. 20 - (III) Determine the work available in a 3.5-kg...Ch. 20 - (I) Use Eq. 2014 to determine the entropy of each...Ch. 20 - (II) Suppose that you repeatedly shake six coins...Ch. 20 - (II) Calculate the relative probabilities, when...Ch. 20 - (II) (a) Suppose you have four coins, all with...Ch. 20 - Prob. 58PCh. 20 - (II) Energy may be stored for use during peak...Ch. 20 - (II) Solar cells (Fig. 20-22) can produce about...Ch. 20 - Prob. 61PCh. 20 - It has been suggested that a heat engine could be...Ch. 20 - A heat engine takes a diatomic gas around the...Ch. 20 - A 126.5-g insulated aluminum cup at 18.00C is...Ch. 20 - (a) At a steam power plant, steam engines work in...Ch. 20 - (II) Refrigeration units can be rated in tons. A...Ch. 20 - Prob. 67GPCh. 20 - (a) What is the coefficient of performance of an...Ch. 20 - The operation of a certain heat engine takes an...Ch. 20 - A car engine whose output power is 155 hp operates...Ch. 20 - Suppose a power plant delivers energy at 850 MW...Ch. 20 - 1.00 mole of an ideal monatomic gas at STP first...Ch. 20 - Two 1100-kg cars are traveling 75 km/h in opposite...Ch. 20 - Metabolizing 1.0 kg of fat results in about 3.7 ...Ch. 20 - A cooling unit for a new freezer has an inner...Ch. 20 - Prob. 76GPCh. 20 - The Stirling cycle shown in Fig 20-27, is useful...Ch. 20 - A gas turbine operates under the Brayton cycle,...Ch. 20 - Thermodynamic processes can be represented not...Ch. 20 - An aluminum can, with negligible heat capacity, is...Ch. 20 - Prob. 81GPCh. 20 - A bowl contains a large number of red, orange, and...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Solar panels are rated by their theoretical maximum output capacity. A 2-kW PV panel would theoretically produce 2 kW of electricity at its maximum output (during peak solar radiance). If the average daily peak sun-hours in Philadelphia are approximately 4.0 hr and a rowhome is outfitted with 10 PV panels each having a capacity of 260 W, how much energy (kilowatt x hours) would be generated in one year (in units of kWh/year)?arrow_forwardAt a certain location , the solar power per unit area reaching Earth’s surface is 200 W/m square , average over a 24 hours day. If the average power requirement in your home 4.0 KW you can covert solar power to electric power with 13% efficiency. How large a collector area will you need to meet all your household energy requirements from solar energy?arrow_forwardAn electric light bulb rated at 100 W is left on for 10 days and nights. (a) How much energy was expended? (b) How long must an electric heater rated 3500 W be left on to expend the same amount of energy?arrow_forward
- At a certain location, the solar power per unit area reaching Earth’s surface is 200 W/m2, averaged over a 24-hour day. If the average power requirement in your home is 3 kW and you can convert solar power to electric power with 10% efficiency, how large a collector area will you need to meet all your household energy requirements from solar energy? (Will a collector fit in your yard or on your roof?)arrow_forwardI often make tea in my microwave oven. I know that it takes two minutes to bring the temperature of a cup of water from room temperature to just about boiling: ready for the teabag. I looked up the characteristics of a microwave oven. Typically their power rating is about 1000 W, but I know that this is the power consumed from the power company, not the power delivered to the water. I looked up the efficiency of microwave ovens, and found that it is about 64%, meaning that a typical oven delivers 640 W to the water. I also looked up the frequency of the microwaves that an oven uses, and found thatf= 2,450 MHz. (a) How much energy is delivered to the water in the making of a cup of tea? (b) What is the wavelength of the microwave? (c) What is the energy of one microwave photon? (d) How many microwave photons are absorbed by the water in making a cup of tea?arrow_forwardWhat is the useful energy output when a 60 W light bulb is on for 2 hours?Recall, traditional light bulbs are only 5% efficient.arrow_forward
- In Washington, a solar panel facing south angled at 15 degrees receives 0.5 (+/- 0.5) kWh/m^2/day in the winter. Solar panels are 20% efficient. Another 20% of power is lost due to heat. A house uses 45 kW per day in the winter. What is the minimum number of panels needed?arrow_forwardA coil connected to a 220 V line is used to heat 600 g of water at 30.0 C. It is found out that after 5 mins, the temperature of water increased by 60.0°C. How much calories of heat are produced by the coil assuming that all the heat goes to water? O 36,000 O 150,480 O 75,240 18,000arrow_forwardAssume that the efficiency of the portable solar panel shown in the figure is 19%.(a)(a)What is the amount of solar radiation required to provide rated output power?(b)(b)The camper connects the panel to a hot water heater in a 1L water container in sunlight according to (a). How long does it take to raise the temperature of this water from 1 degree Celsius to 100 degrees Celsius? Suppose there is no heat loss.arrow_forward
- sometimes the hot water produced by a solar water heater is not warm enough to mee the needs of the occupants of a building. A traditional water heater inside the building supplies additional thermal energy to the solar warmed water. How can this method still reduce the overalll amount of natural gas or electrical energy a building uses?arrow_forwardA 2.0 m2 solar panel is fully illuminated by sunlight. Assume the sunlight has a power density of 0.10 J/cm2 -s. a) If the efficiency of the solar panel is 16%, how much electrical energy will it deliver in one hour? b) If this energy is stored in a battery, how long will it keep a 100 W incandescent lightbulb burning if the bulb has an efficiency of 2.6%. (Efficiency of the lightbulb is the light out - - 100 W - to the electrical power in.)arrow_forwardA typical cost for electric power is $ 0.135 per kilowatt-hour. (a) Some people leave their porch lights on all the time. What is the yearly cost to keep a 75-W bulb burning day and night? (b) Suppose a refrigerator uses 400W of power when it’s running, and it runs 8 hours a day. What is the yearly cost of operating that refrigerator?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning