Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 20, Problem 6P
The temperature of a silver bar rises by 10.0°C when it absorbs 1.23 kJ of energy by heat. The mass of the bar is 525 g. Determine the specific heat of silver from these data.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The temperature of a aluminum bar rises by 10.0°C when it absorbs 4.73 kJ of energy by heat. The mass of the bar is 525 g. Determine the specific heat of aluminum from these data.
During a marathon race David uses energy at a rate of 272 W. What volume of body fluid does he lose in the 5.5 hours of the race if 21.0% of the energy goes to the muscle tissue and the rest is used in removing the perspiration from the body. The latent heat of vaporization is 2.41 106 J/kg at 37.0°C and density of water is 1000 kg/m3. Answer in cubic meters.
The air temperature above coastal areas is profoundly influenced by the large specific heat of water. One reason is that the energy released when 1 cubic meter of water cools by 1.0°C will raise the temperature of an enormously larger volume of air by 1.0°C. Estimate that volume of air. The specific heat of air is approximately 1.0 kJ/kg ? °C. Take the density of air to be 1.3 kg/m3.
Chapter 20 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Ch. 20.2 - Prob. 20.1QQCh. 20.3 - Prob. 20.2QQCh. 20.6 - Prob. 20.3QQCh. 20.6 - Characterize the paths in Figure 19.12 as...Ch. 20.7 - Prob. 20.5QQCh. 20 - Prob. 1OQCh. 20 - Prob. 2OQCh. 20 - Prob. 3OQCh. 20 - Prob. 4OQCh. 20 - Prob. 5OQ
Ch. 20 - Prob. 6OQCh. 20 - Prob. 7OQCh. 20 - Prob. 8OQCh. 20 - Prob. 9OQCh. 20 - Prob. 10OQCh. 20 - Prob. 11OQCh. 20 - Prob. 12OQCh. 20 - Prob. 13OQCh. 20 - Prob. 14OQCh. 20 - Prob. 15OQCh. 20 - Prob. 1CQCh. 20 - Prob. 2CQCh. 20 - Prob. 3CQCh. 20 - Prob. 4CQCh. 20 - Prob. 5CQCh. 20 - Prob. 6CQCh. 20 - Prob. 7CQCh. 20 - Prob. 8CQCh. 20 - Prob. 9CQCh. 20 - Prob. 10CQCh. 20 - Pioneers stored fruits and vegetables in...Ch. 20 - Prob. 12CQCh. 20 - Prob. 1PCh. 20 - Prob. 2PCh. 20 - Prob. 3PCh. 20 - The highest waterfall in the world is the Salto...Ch. 20 - Prob. 5PCh. 20 - The temperature of a silver bar rises by 10.0C...Ch. 20 - Prob. 7PCh. 20 - Prob. 8PCh. 20 - Prob. 9PCh. 20 - If water with a mass mk at temperature Tk is...Ch. 20 - Prob. 11PCh. 20 - Prob. 12PCh. 20 - Prob. 13PCh. 20 - Prob. 14PCh. 20 - Prob. 15PCh. 20 - Prob. 16PCh. 20 - Prob. 17PCh. 20 - How much energy is required to change a 40.0-g ice...Ch. 20 - Prob. 19PCh. 20 - Prob. 20PCh. 20 - Prob. 22PCh. 20 - In an insulated vessel, 250 g of ice at 0C is...Ch. 20 - Prob. 24PCh. 20 - Prob. 25PCh. 20 - Prob. 26PCh. 20 - One mole of an ideal gas is warmed slowly so that...Ch. 20 - Prob. 28PCh. 20 - Prob. 29PCh. 20 - A gas is taken through the cyclic process...Ch. 20 - Prob. 31PCh. 20 - Prob. 32PCh. 20 - A thermodynamic system undergoes a process in...Ch. 20 - Prob. 34PCh. 20 - A 2.00-mol sample of helium gas initially at 300...Ch. 20 - (a) How much work is done on the steam when 1.00...Ch. 20 - Prob. 37PCh. 20 - Prob. 38PCh. 20 - A 1.00-kg block of aluminum is warmed at...Ch. 20 - Prob. 40PCh. 20 - Prob. 41PCh. 20 - Prob. 42PCh. 20 - Prob. 43PCh. 20 - A concrete slab is 12.0 cm thick and has an area...Ch. 20 - Prob. 45PCh. 20 - Prob. 46PCh. 20 - Prob. 47PCh. 20 - Prob. 48PCh. 20 - Two lightbulbs have cylindrical filaments much...Ch. 20 - Prob. 50PCh. 20 - Prob. 51PCh. 20 - Prob. 52PCh. 20 - (a) Calculate the R-value of a thermal window made...Ch. 20 - Prob. 54PCh. 20 - Prob. 55PCh. 20 - Prob. 56PCh. 20 - Prob. 57PCh. 20 - Prob. 58APCh. 20 - Gas in a container is at a pressure of 1.50 atm...Ch. 20 - Prob. 60APCh. 20 - Prob. 61APCh. 20 - Prob. 62APCh. 20 - Prob. 63APCh. 20 - Prob. 64APCh. 20 - Review. Following a collision between a large...Ch. 20 - An ice-cube tray is filled with 75.0 g of water....Ch. 20 - Prob. 67APCh. 20 - Prob. 68APCh. 20 - An iron plate is held against an iron wheel so...Ch. 20 - Prob. 70APCh. 20 - Prob. 71APCh. 20 - One mole of an ideal gas is contained in a...Ch. 20 - Prob. 73APCh. 20 - Prob. 74APCh. 20 - Prob. 75APCh. 20 - Prob. 76APCh. 20 - Prob. 77APCh. 20 - Prob. 78APCh. 20 - Prob. 79APCh. 20 - Prob. 80APCh. 20 - Prob. 81CPCh. 20 - Prob. 82CPCh. 20 - Prob. 83CPCh. 20 - Prob. 84CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Beryllium has roughly one-half the specific heat of water (H2O). Rank the quantities of energy input required to produce the following changes from the largest to the smallest. In your ranking, note any cases of equality, (a) raising the temperature of 1 kg of H2O from 20C to 26C (b) raising the temperature of 2 kg of H2O from 20C to 23C (c) raising the temperature of 2 kg of H2O from 1C to 4C (d) raising the temperature of 2 kg of beryllium from 1C to 2C (e) raising the temperature of 2 kg of H2O from -1C to 2Carrow_forwardIn 1986, a gargantuan iceberg broke away from the Ross Ice Shelf in Antarctica. It was approximately a rectangle 160 km long, 40.0 km wide, and 250 m thick. (a) What is the mass of this iceberg, given that the density of ice is 917kg/m3 ? (b) How much heat transfer (in joules) is needed to melt it? (c) How many years would it take sunlight alone to melt ice this thick, if the ice absorbs an average of 100W/m2, 12.00 h per day?arrow_forwardA hollow aluminum cylinder 20.0 cm deep has an internal capacity of 2.000 L at 20.0C. It is completely filled with turpentine at 20.0C. The turpentine and the aluminum cylinder are then slowly warmed together to 80.0C. (a) How much turpentine overflows? (b) What is the volume of the turpentine remaining in the cylinder at 80.0C? (c) If the combination with this amount of turpentine is then cooled back to 20.0C, how far below the cylinders rim does the turpentines surface recede?arrow_forward
- A granite ball of radius 2.00 m and emissivity 0.450 is heated to 135C. (a) Convert the given temperature to Kelvin. (b) What is the surface area of the ball? (c) If the ambient temperature is 25.0C, what net power does the ball radiate?arrow_forwardA person inhales and exhales 2.00 L of 37.0C air, evaporating 4.00102g of water from the lungs and breathing passages with each breath. (a) How much heat transfer occurs due to evaporation in each breath? (b) What is the rate of heat transfer in watts if the person is breathing at a moderate rate of 18.0 breaths per minute? (c) If the inhaled air had a temperature of 20.0C, what is the rate of heat transfer for warming the air? (d) Discuss the total rate of heat transfer as it relates to typical metabolic rates. Will this breathing be a major form of heat transfer for this person?arrow_forwardOne way to cool a gas is to let it expand. When a certain gas under a pressure of 5.00 106 Ha at 25.0C is allowed to expand to 3.00 times its original volume, its final pressure is 1.07 106 Pa. (a) What is the initial temperature of the gas in Kelvin? (b) What is the final temperature of the system? (See Section 10.4.)arrow_forward
- A 3.00-g lead bullet at 30.0C is fired at a speed of 2.40 102 m/s into a large, fixed block of ice at 0C, in which it becomes embedded. (a) Describe the energy transformations that occur as the bullet is cooled. What is the final temperature of the bullet? (b) What quantity of ice melts?arrow_forwardWhy is the following situation impossible? An ideal gas undergoes a process with the following parameters: Q = 10.0 J, W = 12.0 J, and T = 2.00C.arrow_forwardIn 1993, the U.S. government instituted a requirement that all room air conditioners sold in the United States must have an energy efficiency ratio (EER) of 10 or higher. The EER is defined as the ratio of the cooling capacity of the air conditioner, measured in British thermal units per hour, or Btu/h, to its electrical power requirement in watts. (a) Convert the EER of 10.0 to dimensionless form, using the conversion 1 Btu = 1 055 J. (b) What is the appropriate name for this dimensionless quantity? (c) In the 1970s, it was common to find room air conditioners with EERs of 5 or lower. State how the operating costs compare for 10 000-Btu/h air conditioners with EERs of 5.00 and 10.0. Assume each air conditioner operates for 1 500 h during the summer in a city where electricity costs 17.0 per kWh.arrow_forward
- One of a dilute diatomic gas occupying a volume of 10.00 L expands against a constant pressure of 2.000 atm when it is slowly heated. If the temperature of the gas rises by 10.00 K and 400.0 J of heat are added in the process, what is its final volume?arrow_forward(a) The inside of a hollow cylinder is maintained at a temperature Ta, and the outside is at a lower temperature, Tb (Fig. P19.45). The wall of the cylinder has a thermal conductivity k. Ignoring end effects, show that the rate of energy conduction from the inner surface to the outer surface in the radial direction is dQdt=2Lk[TaTbln(b/a)] Suggestions: The temperature gradient is dT/dr. A radial energy current passes through a concentric cylinder of area 2rL. (b) The passenger section of a jet airliner is in the shape of a cylindrical tube with a length of 35.0 m and an inner radius of 2.50 m. Its walls are lined with an insulating material 6.00 cm in thickness and having a thermal conductivity of 4.00 105 cal/s cm C. A heater must maintain the interior temperature at 25.0C while the outside temperature is 35.0C. What power must be supplied to the heater? Figure P19.45arrow_forwardA glass windowpane in a home is 0.620 cm thick and has dimensions of 1.00 in 2.00 in. On a certain day, the temperature of the interior surface of the glass is 25.0C and the exterior surface temperature is 0C. (a) What is the rate at which energy is transferred by heat through the glass? (b) How much energy is transferred through the window in one day, assuming the temperatures on the surfaces remain constant?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Heat Transfer: Crash Course Engineering #14; Author: CrashCourse;https://www.youtube.com/watch?v=YK7G6l_K6sA;License: Standard YouTube License, CC-BY