Bundle: Introductory Chemistry: A Foundation, Loose-leaf Version, 9th + OWLv2 with MindTap Reader, 1 term (6 months) Printed Access Card
9th Edition
ISBN: 9780357000922
Author: Steven S. Zumdahl, Donald J. DeCoste
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 20, Problem 60QAP
Interpretation Introduction
Interpretation:
The primary, secondary, and tertiary alcohols should be distinguished and structural formula of each should be given.
Concept Introduction:
An organic compound in which hydroxyl
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Differentiate primary, secondary, and tertiary alcohols.
Write the structural formula for 3-methylcyclohexanol.
The chemical formula C4H10O results in four alcohols and three ethers for a total of seven structuralisomers.
Draw pairs of structural formulas for these molecules that illustrate positional and functional isomerism on a sheet of paper. You will be drawing a total of four formulas. Label each pair as positional or functional.
Chapter 20 Solutions
Bundle: Introductory Chemistry: A Foundation, Loose-leaf Version, 9th + OWLv2 with MindTap Reader, 1 term (6 months) Printed Access Card
Ch. 20.2 - Exercise 20.1 Give the molecular formulas for the...Ch. 20.4 - Exercise 20.2 Name the following molecules. a. b.Ch. 20.4 - Exercise 20.3 Write the structural formula for...Ch. 20.5 - Petroleum is a very valuable raw material for the...Ch. 20.7 - Exercise 20.4 Name the following molecules. a. b.Ch. 20.9 - Prob. 20.5SCCh. 20.11 - Prob. 20.6SCCh. 20.14 - Prob. 20.7SCCh. 20 - What is meant by the term “unsaturated...Ch. 20 - Prob. 2ALQ
Ch. 20 - Prob. 3ALQCh. 20 - How many different possible “tetramethylbenzenes”...Ch. 20 - For the general formula C6H14O, draw the...Ch. 20 - Prob. 6ALQCh. 20 - Prob. 1QAPCh. 20 - Your roommate, a chemistry major, claims to have...Ch. 20 - Prob. 3QAPCh. 20 - How many electron pairs are shared when a triple...Ch. 20 - Prob. 5QAPCh. 20 - Prob. 6QAPCh. 20 - Prob. 7QAPCh. 20 - Prob. 8QAPCh. 20 - Prob. 9QAPCh. 20 - . The chains in normal alkanes are not really...Ch. 20 - Prob. 11QAPCh. 20 - Prob. 12QAPCh. 20 - . Give the name of each of the following...Ch. 20 - Prob. 14QAPCh. 20 - . What are structural isomers? Which is the...Ch. 20 - Prob. 16QAPCh. 20 - Prob. 17QAPCh. 20 - Prob. 18QAPCh. 20 - Prob. 19QAPCh. 20 - Prob. 20QAPCh. 20 - . What is an alkyl group? How is a given alkyl...Ch. 20 - . When naming alkanes, find the longest continuous...Ch. 20 - Prob. 23QAPCh. 20 - . When naming alkanes, the alkyl groups are listed...Ch. 20 - . Give the systematic name for each of the...Ch. 20 - . Give the systematic name for each of the...Ch. 20 - Prob. 27QAPCh. 20 - Prob. 28QAPCh. 20 - Prob. 29QAPCh. 20 - Prob. 30QAPCh. 20 - . What is pyrolytic cracking, and why is the...Ch. 20 - Prob. 32QAPCh. 20 - . Explain why alkanes are relatively unreactive.Ch. 20 - Prob. 34QAPCh. 20 - . Indicate the missing molecule in each of the...Ch. 20 - Prob. 36QAPCh. 20 - Prob. 37QAPCh. 20 - Prob. 38QAPCh. 20 - Prob. 39QAPCh. 20 - Prob. 40QAPCh. 20 - Prob. 41QAPCh. 20 - Prob. 42QAPCh. 20 - Prob. 43QAPCh. 20 - Prob. 44QAPCh. 20 - Prob. 45QAPCh. 20 - Prob. 46QAPCh. 20 - Prob. 47QAPCh. 20 - Prob. 48QAPCh. 20 - Prob. 49QAPCh. 20 - . Benzene exhibits resonance Explain this...Ch. 20 - . How is a monosubstituted benzene named? Give the...Ch. 20 - Prob. 52QAPCh. 20 - Prob. 53QAPCh. 20 - . What do the prefixes ortho-, meta-, and para-...Ch. 20 - Prob. 55QAPCh. 20 - Prob. 56QAPCh. 20 - Prob. 57QAPCh. 20 - Prob. 58QAPCh. 20 - . What functional group characterizes an alcohol?...Ch. 20 - Prob. 60QAPCh. 20 - . Give the systematic name for each of the...Ch. 20 - . Is 1-pentanol a primary, secondary, or tertiary...Ch. 20 - . Why is methanol sometimes called wood alcohol?...Ch. 20 - Prob. 64QAPCh. 20 - . Write the equation for the synthesis of ethanol...Ch. 20 - . What is the simplest aromatic alcohol commonly...Ch. 20 - Prob. 67QAPCh. 20 - Prob. 68QAPCh. 20 - Prob. 69QAPCh. 20 - Prob. 70QAPCh. 20 - Prob. 71QAPCh. 20 - Prob. 72QAPCh. 20 - Prob. 73QAPCh. 20 - Prob. 74QAPCh. 20 - Prob. 75QAPCh. 20 - Prob. 76QAPCh. 20 - Prob. 77QAPCh. 20 - Prob. 78QAPCh. 20 - Prob. 79QAPCh. 20 - Prob. 80QAPCh. 20 - Prob. 81QAPCh. 20 - . Draw a structural formula for each of the...Ch. 20 - Prob. 83QAPCh. 20 - Prob. 84QAPCh. 20 - Prob. 85QAPCh. 20 - Prob. 86QAPCh. 20 - Prob. 87QAPCh. 20 - Prob. 88QAPCh. 20 - Prob. 89APCh. 20 - Prob. 90APCh. 20 - Prob. 91APCh. 20 - Prob. 92APCh. 20 - Prob. 93APCh. 20 - . The systematic names of all saturated...Ch. 20 - Prob. 95APCh. 20 - Prob. 96APCh. 20 - Prob. 97APCh. 20 - Prob. 98APCh. 20 - Prob. 99APCh. 20 - . With very reactive agents, such as the halogen...Ch. 20 - . Alkenes and alkynes are characterized by their...Ch. 20 - Prob. 102APCh. 20 - Prob. 103APCh. 20 - Prob. 104APCh. 20 - Prob. 105APCh. 20 - Prob. 106APCh. 20 - Prob. 107APCh. 20 - Prob. 108APCh. 20 - Prob. 109APCh. 20 - Prob. 110APCh. 20 - Prob. 111APCh. 20 - Prob. 112APCh. 20 - Prob. 113APCh. 20 - Prob. 114APCh. 20 - Prob. 115APCh. 20 - . Give the systematic name for each of the...Ch. 20 - Prob. 117APCh. 20 - Prob. 118APCh. 20 - Prob. 119APCh. 20 - Prob. 120APCh. 20 - Prob. 121APCh. 20 - Prob. 122APCh. 20 - Prob. 123APCh. 20 - Prob. 124APCh. 20 - Prob. 125APCh. 20 - Prob. 126APCh. 20 - Prob. 127APCh. 20 - Prob. 128APCh. 20 - Prob. 129APCh. 20 - Prob. 130APCh. 20 - Prob. 131APCh. 20 - . Write the formula for the missing reactant or...Ch. 20 - Prob. 133APCh. 20 - Prob. 134APCh. 20 - . Name each of the following aromatic or...Ch. 20 - Prob. 136APCh. 20 - Prob. 137APCh. 20 - Prob. 138APCh. 20 - Prob. 139APCh. 20 - Prob. 140APCh. 20 - Prob. 141APCh. 20 - . Name each of the following alkanes....Ch. 20 - Prob. 143CPCh. 20 - Prob. 144CPCh. 20 - Prob. 145CPCh. 20 - Prob. 146CPCh. 20 - Prob. 147CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- What functional group distinguishes each of the following hydrocarbon derivatives? a. halohydrocarbons b. alcohols c. ethers d. aldehydes e. ketones f. carboxylic acids g. esters h. amines Give examples of each functional group. What prefix or suffix is used to name each functional group? What are the bond angles in each? Describe the bonding in each functional group. What is the difference between a primary, secondary, and tertiary alcohol? For the functional groups in ah, when is a number required to indicate the position of the functional group? Carboxylic acids are often written as RCOOH. What does COOH indicate and what does R indicate? Aldehydes are sometimes written as RCHO. What does CHO indicate?arrow_forwardAlcohols are very useful starting materials for the production of many different compounds. The following conversions, starting with 1-butanol, can be carried out in two or more steps. Show the steps (reactants/catalysts) you would follow to carry out the conversions, drawing the formula for the organic product in each step. For each step, a major product must be produced. (See Exercise 62.) (Hint: In the presence of H+, an alcohol is converted into an alkene and water. This is the exact reverse of the reaction of adding water to an alkene to form an alcohol.) a. 1-butanol butane b. 1-butanol 2-butanonearrow_forwardWrite the molecular formula of each alkane.arrow_forward
- 1. The chemical formula C4H100 results in four alcohols and three ethers for a total of seven structural isomers. Draw pairs of structural formulas for these molecules that illustrate positional and functional isomerism on a sheet of paper. You will be drawing a total of four formulas. Label each pair as positional or functional.arrow_forwardHow does the structure of an alcohol differ from an ether? Describe how an aldehyde differs in structure from a ketone. Thiols are compounds which resemble alcohols, except that the oxygen atom is replaced by a sulfur atom. Draw the analogous thiol for the four carbon alcohol in Table 1. Describe the structural difference between carboxylic acids and esters. Are ethers polar molecules? Would you expect ethers to have higher or lower boiling points than alkanes (circle one)? Explain. Pentane (an alkane) has a boiling point of 36 °C. Does the data agree with your prediction? explain why this could be the casearrow_forwardWrite the structural formula for propylene glycol, 1,2-propanediol. Why is it classified as an alcohol? Is it a polar molecule? Should it be miscible with water?arrow_forward
- You are teaching a class in organic chemistry to grade 12 students. Outline the differences in 3 physical properties between alkanes, alcohols, and carboxylic acids. Note: they all have the same hydrocarbon length.arrow_forward3) Give the structural formulas and the old and new IUPAC names of all eight open-chain isomeric alcohols with the molecular formula CSH11OH. Indicate which of these isomers are primary, secondary, or tertiary alcohol. 4) Six isomeric saturated ethers have the molecular formula CsH120. Write the structural formula and name for each of these ethers.arrow_forwardName the functional groups for each. Specify primary, secondary, and tertiary alcohols and halides.arrow_forward
- 1. Give an example of alcohol with structural formula 2. Give an example of phenols with structural formula 3. Give an example of ethers with structural formulaarrow_forwardDraw Lewis structures and condensed structural formulas for the four alcohols with the molecular formula C4H10O. Classify each alcohol as primary, secondary, or tertiary. (Hint: First consider the connectivity of the four carbon atoms; they can be bonded either four in a chain or three in a chain with the fourth carbon as a branch on the middle carbon. Then consider the points at which the iOH group can be bonded to each carbon chain.)arrow_forwardExplain using only structural diagrams only the differences between primary,secondary and tertiary alcohols.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
Organic Chemistry
Chemistry
ISBN:9781305580350
Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chapter 4 Alkanes and Cycloalkanes Lesson 2; Author: Linda Hanson;https://www.youtube.com/watch?v=AL_CM_Btef4;License: Standard YouTube License, CC-BY
Chapter 4 Alkanes and Cycloalkanes Lesson 1; Author: Linda Hanson;https://www.youtube.com/watch?v=PPIa6EHJMJw;License: Standard Youtube License