INTRO.TO HEALTH CARE-W/MINDTAP (2 TERM)
5th Edition
ISBN: 9780357475249
Author: Haroun
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Knowledge Booster
Similar questions
- What is probability, and how is it applied in genetic analysis?arrow_forwardA pedigree analysis was performed on the family of a man with schizophrenia. Based on the known concordance statistics, would his MZ twin be at high risk for the disease? Would the twins risk decrease if he were raised in an environment different from that of his schizophrenic brother?arrow_forwardWhy are monozygotic twins who are reared apart so useful in the calculation of heritability?arrow_forward
- Identify a possible advantage and a possible disadvantage of a genetic test that would identify genes in individuals that increase their probability of having Alzheimer’s disease later in life.arrow_forwardGiven the karyotype shown at right, is this a male or a female? Normal or abnormal? What would the phenotype of this individual be?arrow_forwardHow is heritability related to genetic and environmental variance?arrow_forward
- Why do unrelated children with a disorder such as Down syndrome resemble each other more closely than they do their siblings?arrow_forwardCystic fibrosis is an autosomal disease that mainly affects the white population, and 1 in 20 whites are heterozygotes. Genetic testing can diagnose heterozygotes. Should a genetic screening program for cystic fibrosis be instituted? Should the federal government fund it? Should the program be voluntary or mandatory, and why?arrow_forwardPedigree analysis is a fundamental tool for investigating whether or not a trait is following a Mendelian pattern of inheritance. It can also be used to help identify individuals within a family who may be at risk for the trait. Adam and Sarah, a young couple of Eastern European Jewish ancestry, went to a genetic counselor because they were planning a family and wanted to know what their chances were for having a child with a genetic condition. The genetic counselor took a detailed family history from both of them and discovered several traits in their respective families. Sarahs maternal family history is suggestive of an autosomal dominant pattern of cancer predisposition to breast and ovarian cancer because of the young ages at which her mother and grandmother were diagnosed with their cancers. If a mutant allele that predisposed to breast and ovarian cancer was inherited in Sarahs family, she, her sister, and any of her own future children could be at risk for inheriting this mutation. The counselor told her that genetic testing is available that may help determine if this mutant allele is present in her family members. Adams paternal family history has a very strong pattern of early onset heart disease. An autosomal dominant condition known as familial hypercholesterolemia may be responsible for the large number of deaths from heart disease. As with hereditary breast and ovarian cancer, genetic testing is available to see if Adam carries the mutant allele. Testing will give the couple more information about the chances that their children could inherit this mutation. Adam had a first cousin who died from Tay-Sachs disease (TSD), a fatal autosomal recessive condition most commonly found in people of Eastern European Jewish descent. Because TSD is a recessively inherited disorder, both of his cousins parents must have been heterozygous carriers of the mutant allele. If that is the case, Adams father could be a carrier as well. If Adams father carries the mutant TSD allele, it is possible that Adam inherited this mutation. Because Sarah is also of Eastern European Jewish ancestry, she could also be a carrier of the gene, even though no one in her family has been affected with TSD. If Adam and Sarah are both carriers, each of their children would have a 25% chance of being afflicted with TSD. A simple blood test performed on both Sarah and Adam could determine whether they are carriers of this mutation. If Sarah carries the mutant cancer allele and Adam carries the mutant heart disease allele, what is the chance that they would have a child who is free of both diseases? Are these good odds?arrow_forward
- Pedigree analysis is a fundamental tool for investigating whether or not a trait is following a Mendelian pattern of inheritance. It can also be used to help identify individuals within a family who may be at risk for the trait. Adam and Sarah, a young couple of Eastern European Jewish ancestry, went to a genetic counselor because they were planning a family and wanted to know what their chances were for having a child with a genetic condition. The genetic counselor took a detailed family history from both of them and discovered several traits in their respective families. Sarahs maternal family history is suggestive of an autosomal dominant pattern of cancer predisposition to breast and ovarian cancer because of the young ages at which her mother and grandmother were diagnosed with their cancers. If a mutant allele that predisposed to breast and ovarian cancer was inherited in Sarahs family, she, her sister, and any of her own future children could be at risk for inheriting this mutation. The counselor told her that genetic testing is available that may help determine if this mutant allele is present in her family members. Adams paternal family history has a very strong pattern of early onset heart disease. An autosomal dominant condition known as familial hypercholesterolemia may be responsible for the large number of deaths from heart disease. As with hereditary breast and ovarian cancer, genetic testing is available to see if Adam carries the mutant allele. Testing will give the couple more information about the chances that their children could inherit this mutation. Adam had a first cousin who died from Tay-Sachs disease (TSD), a fatal autosomal recessive condition most commonly found in people of Eastern European Jewish descent. Because TSD is a recessively inherited disorder, both of his cousins parents must have been heterozygous carriers of the mutant allele. If that is the case, Adams father could be a carrier as well. If Adams father carries the mutant TSD allele, it is possible that Adam inherited this mutation. Because Sarah is also of Eastern European Jewish ancestry, she could also be a carrier of the gene, even though no one in her family has been affected with TSD. If Adam and Sarah are both carriers, each of their children would have a 25% chance of being afflicted with TSD. A simple blood test performed on both Sarah and Adam could determine whether they are carriers of this mutation. Would you want to know the results of the cancer, heart disease, and TSD tests if you were Sarah and Adam? Is it their responsibility as potential parents to gather this type of information before they decide to have a child?arrow_forwardPedigree analysis is a fundamental tool for investigating whether or not a trait is following a Mendelian pattern of inheritance. It can also be used to help identify individuals within a family who may be at risk for the trait. Adam and Sarah, a young couple of Eastern European Jewish ancestry, went to a genetic counselor because they were planning a family and wanted to know what their chances were for having a child with a genetic condition. The genetic counselor took a detailed family history from both of them and discovered several traits in their respective families. Sarahs maternal family history is suggestive of an autosomal dominant pattern of cancer predisposition to breast and ovarian cancer because of the young ages at which her mother and grandmother were diagnosed with their cancers. If a mutant allele that predisposed to breast and ovarian cancer was inherited in Sarahs family, she, her sister, and any of her own future children could be at risk for inheriting this mutation. The counselor told her that genetic testing is available that may help determine if this mutant allele is present in her family members. Adams paternal family history has a very strong pattern of early onset heart disease. An autosomal dominant condition known as familial hypercholesterolemia may be responsible for the large number of deaths from heart disease. As with hereditary breast and ovarian cancer, genetic testing is available to see if Adam carries the mutant allele. Testing will give the couple more information about the chances that their children could inherit this mutation. Adam had a first cousin who died from Tay-Sachs disease (TSD), a fatal autosomal recessive condition most commonly found in people of Eastern European Jewish descent. Because TSD is a recessively inherited disorder, both of his cousins parents must have been heterozygous carriers of the mutant allele. If that is the case, Adams father could be a carrier as well. If Adams father carries the mutant TSD allele, it is possible that Adam inherited this mutation. Because Sarah is also of Eastern European Jewish ancestry, she could also be a carrier of the gene, even though no one in her family has been affected with TSD. If Adam and Sarah are both carriers, each of their children would have a 25% chance of being afflicted with TSD. A simple blood test performed on both Sarah and Adam could determine whether they are carriers of this mutation. Would you decide to have a child if the test results said that you carry the mutation for breast and ovarian cancer? The heart disease mutation? The TSD mutation? The heart disease and the mutant alleles?arrow_forwardPedigree Analysis Is a Basic Method in Human Genetics Using the pedigree provided, answer the following questions. a. Is the proband male or female? b. Is the grandfather of the proband affected? c. How many siblings does the proband have, and where is he or she in the birth order?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Human Biology (MindTap Course List)BiologyISBN:9781305112100Author:Cecie Starr, Beverly McMillanPublisher:Cengage Learning
- Human Heredity: Principles and Issues (MindTap Co...BiologyISBN:9781305251052Author:Michael CummingsPublisher:Cengage LearningPrinciples Of Radiographic Imaging: An Art And A ...Health & NutritionISBN:9781337711067Author:Richard R. Carlton, Arlene M. Adler, Vesna BalacPublisher:Cengage Learning

Human Biology (MindTap Course List)
Biology
ISBN:9781305112100
Author:Cecie Starr, Beverly McMillan
Publisher:Cengage Learning

Human Heredity: Principles and Issues (MindTap Co...
Biology
ISBN:9781305251052
Author:Michael Cummings
Publisher:Cengage Learning

Principles Of Radiographic Imaging: An Art And A ...
Health & Nutrition
ISBN:9781337711067
Author:Richard R. Carlton, Arlene M. Adler, Vesna Balac
Publisher:Cengage Learning