(a)
Interpretation:
The differences between the terms alpha, beta, and gamma radiation are to be stated.
Concept introduction:
The elements whose nucleus decays spontaneously are known as radioactive elements. The decay is accompanied by the emission of alpha particles, beta particles, and gamma rays. All the elements which have an
Answer to Problem 59E
Alpha radiations are made of positively charged particles. Beta radiations are made of negatively charged particles. Gamma radiations are made up of neutral particles.
Explanation of Solution
Alpha radiations are soft radiations. They have very little penetrating power. They consist of positively charged particles. Beta radiations have more penetrating power than alpha radiations. They consist of negatively charged particles. Gamma radiations are neutral in nature. They have the highest penetrating power out of alpha and beta radiations.
Alpha radiations, beta radiations, and gamma radiations are made up of positively charged particles, negatively charged particles, and neutral particles respectively.
(b)
Interpretation:
The differences between the terms, x-rays, and
Concept introduction:
The elements whose nucleus decays spontaneously are known as radioactive elements. The decay is accompanied by the emission of alpha particles, beta particles, and gamma rays. All the elements which have an atomic number greater than
Answer to Problem 59E
X-rays are the result of extra-nuclear phenomenon.
Explanation of Solution
The x-ray radiations are an
X-rays are produced due to extra-nuclear phenomenon.
(c)
Interpretation:
The differences between the terms,
Concept introduction:
The elements whose nucleus decays spontaneously are known as radioactive elements. The decay is accompanied by the emission of alpha particles, beta particles, and gamma rays. All the elements which have an atomic number greater than
Answer to Problem 59E
The
Explanation of Solution
The
The doubly charged helium atom,
(d)
Interpretation:
The differences between the terms, natural and induced radioactivity are to be stated.
Concept introduction:
The elements whose nucleus decays spontaneously are known as radioactive elements. The decay is accompanied by the emission of alpha particles, beta particles, and gamma rays. All the elements which have an atomic number greater than
Answer to Problem 59E
Natural radioactivity is the spontaneous decay of the nucleus whereas, in induced radioactivity, the decay of the nucleus is induced via bombardment.
Explanation of Solution
The spontaneous degradation of the nucleus with the emission of alpha particles, beta particles, and gamma rays is termed as natural radioactivity. Sometimes, a nuclear reaction is induced by bombarding the nucleus with different particles. This is termed as induced radioactivity.
The spontaneous decay of the nucleus is termed as natural radioactivity. The induced decay of the nucleus is termed as induced radioactivity.
(e)
Interpretation:
The differences between the terms,
Concept introduction:
The elements whose nucleus decays spontaneously are known as radioactive elements. The decay is accompanied by the emission of alpha particles, beta particles, and gamma rays. All the elements which have an atomic number greater than
Answer to Problem 59E
Chemical reactions are an extranuclear phenomenon. Nuclear reactions are an intranuclear phenomenon.
Explanation of Solution
Chemical reactions are concerned with the extranuclear phenomenon. They are completely guided by the electrons present outside the nucleus. The nucleus of the elements does not change in a chemical reaction. Nuclear reactions are concerned with the intranuclear phenomenon. Transmutation takes place in nuclear reactions.
Chemical reactions are concerned with electrons present outside the nucleus. Nuclear reactions are concerned with transmutation.
(f)
Interpretation:
The differences between the terms, isotope, and radioisotope are to be stated.
Concept introduction:
The elements whose nucleus decays spontaneously are known as radioactive elements. The decay is accompanied by the emission of alpha particles, beta particles, and gamma rays. All the elements which have an atomic number greater than
Answer to Problem 59E
The chemical species having the same atomic number but a different mass number are termed as isotopes. Isotopes which undergo spontaneous nuclear reactions are termed as radioisotopes.
Explanation of Solution
Atoms are the constituent particles of matter. They are made up of subatomic particles, namely-electrons, neutrons, and protons.
Isotopes are the chemical species which have the same atomic number but a different mass number. Radioisotopes are the isotopes of an element which can undergo nuclear reactions spontaneously.
(g)
Interpretation:
The differences between the terms, element, and transuranium element are to be stated.
Concept introduction:
The elements whose nucleus decays spontaneously are known as radioactive elements. The decay is accompanied by the emission of alpha particles, beta particles, and gamma rays. All the elements which have an atomic number greater than
Answer to Problem 59E
Elements are the chemical species formed by single type of atoms. Transuranium elements are the elements post uranium in the periodic table.
Explanation of Solution
The species formed by very small, discrete particles which cannot be generated or destroyed are known as atoms. The chemical species formed by a single type of atoms are termed as elements. The synthetic radioisotopes which have an atomic number greater than
The chemical species formed by single type of atoms are known as elements. The elements post uranium in the periodic table are known as transuranium elements.
(h)
Interpretation:
The differences between the terms, nuclear fission, and nuclear fusion are to be stated.
Concept introduction:
The elements whose nucleus decays spontaneously are known as radioactive elements. The decay is accompanied by the emission of alpha particles, beta particles, and gamma rays. All the elements which have an atomic number greater than
Answer to Problem 59E
The difference between nuclear fission and nuclear fusion is that, in fission reactions, a larger nucleus splits to give two nuclei of smaller masses, while in fusion reactions, two small nuclei combine to give a larger nucleus.
Explanation of Solution
In fusion reactions, two small nuclei combine to form a larger nucleus. In fission reactions, a larger nucleus splits to give two nuclei of smaller masses. Both the reactions are accompanied by the emission of heat. The heat released during a fusion reaction is more than the heat released during a fission reaction.
Two smaller nuclei combine to form a larger nucleus in fusion reactions. A larger nucleus splits to give two smaller nuclei in fission reactions.
(i)
Interpretation:
The differences between the terms, atomic bomb, and hydrogen bomb are to be stated.
Concept introduction:
The elements whose nucleus decays spontaneously are known as radioactive elements. The decay is accompanied by the emission of alpha particles, beta particles, and gamma rays. All the elements which have an atomic number greater than
Answer to Problem 59E
Atomic bombs operate due to nuclear fission reactions. Hydrogen bombs operate due to nuclear fusion reactions.
Explanation of Solution
In fission reactions, a larger nucleus splits to give two nuclei of smaller masses, while in fusion reactions, two small nuclei combine to give a larger nucleus. Nuclear fission reactions take place in an atomic bomb. Nuclear fusion reactions take place in a hydrogen bomb.
In atomic bombs, nuclear fission reactions take place, while in hydrogen bombs, nuclear fusion reactions take place.
Want to see more full solutions like this?
Chapter 20 Solutions
Introductory Chemistry: An Active Learning Approach
- Introductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning