
(a)
Interpretation:
The strongest reducing agent among the ions in central column of the given table needs to be determined.
Concept introduction:
The oxidizing agents oxidize any reaction, but they get reduced during this process.
The reducing agents reduce the reaction but they themselves get oxidized.
In the given table of standard reduction potential, the nature of cations can be predicted to oxidizing or reducing on behalf of following observation.
For any cation:
The more positive the reduction potential, easier will be the self reduction and hence the oxidizing agent will be stronger.
The more negative (or least positive) the reduction potential, easier will be self oxidation as the oxidation potential value will be more positive, and hence the reducing agent will be stronger.
(b)
Interpretation:
The strongest oxidizing agent among the ions in central column of the given table needs tobe determined.
Concept introduction:
The oxidizing agents oxidize any reaction, but they get reduced during this process.
The reducing agents reduce the reaction but they themselves get oxidized.
In the given table of standard reduction potential, the nature of cations can be predicted to oxidizing or reducing on behalf of following observation.
For any cation:
The more positive the reduction potential, easier will be the self reduction and hence the oxidizing agent will be stronger.
The more negative (or least positive) the reduction potential, easier will be self oxidation as the oxidation potential value will be more positive, and hence the reducing agent will be stronger.
(c)
Interpretation:
The weakest reducing agent among the ions in central column of the given table needs to be determined.
Concept introduction:
The oxidizing agents oxidize any reaction, but they get reduced during this process.
The reducing agents reduce the reaction but they themselves get oxidized.
In the given table of standard reduction potential, the nature of cations can be predicted to oxidizing or reducing on behalf of following observation.
For any cation:
The more positive the reduction potential, easier will be the self reduction and hence the oxidizing agent will be stronger.
The more negative (or least positive) the reduction potential, easier will be self-oxidation as the oxidation potential value will be more positive, and hence the reducing agent will be stronger.
(d)
Interpretation:
The weakest oxidizing agent among the ions in central column of the given table needs to be determined.
Concept introduction:
The oxidizing agents oxidize any reaction but they get reduced during this process.
The reducing agents reduce the reaction but they themselves get oxidized.
In the given table of standard reduction potential, the nature of cations can be predicted to oxidizing or reducing on behalf of following observation.
For any cation:
The more positive the reduction potential, easier will be the self reduction and hence the oxidizing agent will be stronger.
The more negative (or least positive) the reduction potential, easier will be self oxidation as the oxidation potential value will be more positive, and hence the reducing agent will be stronger.

Want to see the full answer?
Check out a sample textbook solution
Chapter 20 Solutions
CHEMISTRY:PRIN.+REACTIONS-OWLV2 ACCESS
- HELP NOW PLEASE ! ASAP! URGENT!arrow_forwardHELP NOW PLEASE ! ASAP! URGENT!arrow_forwardDraw a Newman projection for the molecule below from the perspective indicated. Which of the groups (letters A-H) are methyl groups? CH3 H H H A H B ☑ >> H. ABCDEFG I H -H CH3 G D CH F E Numeric 4 points How many gauche interactions exist in the conformation shown in the previous problem? 1arrow_forward
- HELP NOW PLEASE ! ASAP! URGENT!arrow_forwardHELP NOW PLEASE ! ASAP! URGENT!arrow_forwardWould the following organic synthesis occur in one step? Add any missing products, required catalysts, inorganic reagents, and other important conditions. Please include a detailed explanation and drawings showing how the reaction may occur in one step.arrow_forward
- Pls help.arrow_forward13) When solid barium phosphate is in equilibrium with its ions, the ratio of barium ions to phosphate ions would be: a. 1:1 b. 2:3 c. 3:2 d. 2:1 14) The pH of a 0.05 M solution of HCl(aq) at 25°C is 15) The pH of a 0.20 M solution of KOH at 25°C isarrow_forwardPls help.arrow_forward
- Pls help.arrow_forward16) A 2.0 L flask containing 2.0 x 10-3 mol H2(g), 3.0 x 10-3 mol Cl2(g), and 4.0 x 10-3 mol HCl(g) at equilibrium. This system is represented by the following chemical equation: H2 (g) + Cl2 (g) → 2HCl(g) Calculate the equilibrium constant for this reaction.arrow_forward7) The pH of a 0.05M solution of HCl(aq) at 25°C is a. 1.3 b. 2.3 c. 3.3 d. 12.7arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning




