EBK PHYSICS FOR SCIENTISTS AND ENGINEER
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
10th Edition
ISBN: 8220106906149
Author: Jewett
Publisher: Cengage Learning US
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 20, Problem 39AP

(a)

To determine

The numerical value of the Nv(v)Nv(vmp) for the value of v=vmp50.0.

(a)

Expert Solution
Check Mark

Answer to Problem 39AP

The numerical value of the Nv(v)Nv(vmp) for the value of v=vmp50.0 is 1.09×103.

Explanation of Solution

Value of average speed is vmp50.0.

Write the expression for the Maxwell-Boltzmann speed distribution function,

    Nv=4πN(m02πkBT)32v2e(m0v22kBT)                            (1)

Here, Nv is the Maxwell-Boltzmann speed distribution function, N is the total number of molecules of gas, T is the absolute temperature of gas, v is the speed of the fraction of molecules of gas, kB is the Boltzmann constant and m0 is the mass of the gas molecule.

Write the expression for the average speed of a gas molecule.

    v=8kBTπm0

Here, v is the average speed of a gas molecule.

Write the expression for the most probable speed of a gas molecule.

    vmp=2kBTm0

Here, vmp is the most probable speed of a gas molecule.

Write the formula to calculate the numerical value of the Nv(v)Nv(vmp) using equation(1).

    Nv(v)Nv(vmp)=4πN(m02πkBT)32v2e(m0v22kBT)4πN(m02πkBT)32vmp2e(m0vmp22kBT)=(vvmp)2e(m0vmp22kBTm0v22kBT)=(vvmp)2em0vmp22kBT(1(vvmp)2) (2)

Substitute 2kBTm0 for vmp in equation (2) to find Nv(v)Nv(vmp).

    Nv(v)Nv(vmp)=(vvmp)2em0(2kBTm0)22kBT(1(vvmp)2)=(vvmp)2e(1(vvmp)2)                                                  (3)

Conclusion:

Substitute vmp50.0 for v in equation (3) to find Nv(v)Nv(vmp),

    Nv(v)Nv(vmp)=(vmp50.0vmp)2e(1(vmp50.0vmp)2)=1.0868×1031.09×103

Thus, the numerical value of the Nv(v)Nv(vmp) for the value of v=vmp50.0 is 1.09×103.

(b)

To determine

The numerical value of the Nv(v)Nv(vmp) for the value of v=vmp10.0.

(b)

Expert Solution
Check Mark

Answer to Problem 39AP

The numerical value of the Nv(v)Nv(vmp) for the value of v=vmp10.0 is 2.69×102.

Explanation of Solution

 Value of average speed is vmp10.0.

From equation (3), Write the formula to calculate the numerical value of the Nv(v)Nv(vmp)

    Nv(v)Nv(vmp)=(vvmp)2e(1(vvmp)2)

Conclusion:

Substitute vmp10.0 for v in above expression to find Nv(v)Nv(vmp).

    Nv(v)Nv(vmp)=(vmp10.0vmp)2e(1(vmp10.0vmp)2)=2.69×102

Thus, the numerical value of the Nv(v)Nv(vmp) for the value of v=vmp10.0 is 2.69×102.

(c)

To determine

The numerical value of the Nv(v)Nv(vmp) for the value of v=vmp2.00.

(c)

Expert Solution
Check Mark

Answer to Problem 39AP

The numerical value of the Nv(v)Nv(vmp) for the value of v=vmp2.00 is 0.529.

Explanation of Solution

 Value of average speed is vmp2.00.

Recall equation (3)

Conclusion:

Substitute vmp2.00 for v in equation (3) to find Nv(v)Nv(vmp).

    Nv(v)Nv(vmp)=(vmp2.00vmp)2e(1(vmp2.00vmp)2)=0.529

Therefore, the numerical value of the Nv(v)Nv(vmp) for the value of v=vmp2.00 is 0.529.

(d)

To determine

The numerical value of the Nv(v)Nv(vmp) for the value of v=vmp.

(d)

Expert Solution
Check Mark

Answer to Problem 39AP

The numerical value of the Nv(v)Nv(vmp) for the value of v=vmp is 1.00.

Explanation of Solution

 Value of average speed is vmp.

Recall equation (3)

Conclusion:

Substitute vmp for v in above expression to find Nv(v)Nv(vmp).

    Nv(v)Nv(vmp)=(vmpvmp)2e(1(vmpvmp)2)=1.00

Therefore, the numerical value of the Nv(v)Nv(vmp) for the value of v=vmp is 1.00.

(e)

To determine

The numerical value of the Nv(v)Nv(vmp) for the value of v=2.00vmp.

(e)

Expert Solution
Check Mark

Answer to Problem 39AP

The numerical value of the Nv(v)Nv(vmp) for the value of v=2.00vmp is 0.199.

Explanation of Solution

 Value of average speed is 2.00vmp.

Recall equation (3)

Conclusion:

Substitute 2.00vmp for v in above expression to find Nv(v)Nv(vmp).

    Nv(v)Nv(vmp)=(2.00vmpvmp)2e(1(2.00vmpvmp)2)=0.199

Thus, the numerical value of the Nv(v)Nv(vmp) for the value of v=2.00vmp is 0.199.

(f)

To determine

The numerical value of the Nv(v)Nv(vmp) for the value of v=10.0vmp.

(f)

Expert Solution
Check Mark

Answer to Problem 39AP

The numerical value of the Nv(v)Nv(vmp) for the value of v=10.0vmp is 1.01×1041.

Explanation of Solution

 Value of average speed is 10.0vmp.

Recall equation (3),

Conclusion:

Substitute 10.0vmp for v in above expression to find Nv(v)Nv(vmp).

    Nv(v)Nv(vmp)=(10.0vmpvmp)2e(1(10.0vmpvmp)2)=1.01×1041

Thus, the numerical value of the Nv(v)Nv(vmp) for the value of v=10.0vmp is 1.01×1041.

(g)

To determine

The numerical value of the Nv(v)Nv(vmp) for the value of v=50.0vmp.

(g)

Expert Solution
Check Mark

Answer to Problem 39AP

The numerical value of the Nv(v)Nv(vmp) for the value of v=50.0vmp is 1.25×101082

Explanation of Solution

Reacall equation (3)

Conclusion:

Substitute 50.0vmp for v in above equation to find Nv(v)Nv(vmp).

    Nv(v)Nv(vmp)=(50.0vmpvmp)2e(1(50.0vmpvmp)2)=1.25×101082

Thus, the numerical value of the Nv(v)Nv(vmp) for the value of v=50.0vmp is 1.25×101082.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
air is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cm
No chatgpt pls will upvote
13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…

Chapter 20 Solutions

EBK PHYSICS FOR SCIENTISTS AND ENGINEER

Ch. 20 - In a period of 1.00 s, 5.00 1023 nitrogen...Ch. 20 - A 7.00-L vessel contains 3.50 moles of gas at a...Ch. 20 - Calculate the change in internal energy of 3.00...Ch. 20 - Prob. 10PCh. 20 - In a constant-volume process, 209 J of energy is...Ch. 20 - A vertical cylinder with a heavy piston contains...Ch. 20 - A 1.00-L insulated bottle is full of tea at 90.0C....Ch. 20 - A certain molecule has f degrees of freedom. Show...Ch. 20 - You are working for an automobile tire company....Ch. 20 - Why is the following situation impossible? A team...Ch. 20 - You and your younger brother are designing an air...Ch. 20 - During the compression stroke of a certain...Ch. 20 - Air in a thundercloud expands as it rises. If its...Ch. 20 - Why is the following situation impossible? A new...Ch. 20 - Air (a diatomic ideal gas) at 27.0C and...Ch. 20 - Prob. 22PCh. 20 - Prob. 23PCh. 20 - Prob. 24PCh. 20 - Prob. 25PCh. 20 - The law of atmospheres states that the number...Ch. 20 - Prob. 27APCh. 20 - Prob. 28APCh. 20 - The dimensions of a classroom are 4.20 m 3.00 m ...Ch. 20 - Prob. 30APCh. 20 - The Earths atmosphere consists primarily of oxygen...Ch. 20 - Review. As a sound wave passes through a gas, the...Ch. 20 - Prob. 33APCh. 20 - In a cylinder, a sample of an ideal gas with...Ch. 20 - As a 1.00-mol sample of a monatomic ideal gas...Ch. 20 - A sample consists of an amount n in moles of a...Ch. 20 - The latent heat of vaporization for water at room...Ch. 20 - A vessel contains 1.00 104 oxygen molecules at...Ch. 20 - Prob. 39APCh. 20 - Prob. 40APCh. 20 - Prob. 41APCh. 20 - On the PV diagram for an ideal gas, one isothermal...Ch. 20 - Prob. 43APCh. 20 - Prob. 44APCh. 20 - Prob. 45CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Kinetic Molecular Theory and its Postulates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=o3f_VJ87Df0;License: Standard YouTube License, CC-BY