
EBK STARTING OUT WITH C++
8th Edition
ISBN: 8220100794438
Author: GADDIS
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 20, Problem 2PC
Program Plan Intro
Node Counter
Program Plan:
Main.cpp:
- Include required header files.
- Inside the “main ()” function,
- Display the number of nodes by calling the function “numNodes ()”.
- Insert nodes into the binary tree by using the function “insert_Node ()”.
- Display those nodes by using the function “display_InOrder ()”.
- Now, display the number of nodes by calling the function “numNodes ()”.
- Delete two nodes from the binary tree by using the function “remove ()”.
- Display remaining nodes by using the function “display_InOrder ()”.
- Finally, display the number of nodes by calling the function “numNodes ()”.
BinaryTree.h:
- Include required header files.
- Create a class template.
- Declare a class named “BinaryTree”. Inside the class,
- Inside the “private” access specifier,
- Give the structure declaration for the creation of node.
- Create an object for the template.
- Create two pointers named “left_Node” and “right_Node” to access the value left and right nodes respectively.
- Declare a variable “leafCount”.
- Create a pointer named “root” to access the value of root node.
- Give function declaration for “insert ()”, “destroy_SubTree ()”, “delete_Node ()”, “make_Deletion ()”, “display_InOrder ()”, “display_PreOrder ()”, “display_PostOrder ()”, and “count_Nodes ()”.
- Give the structure declaration for the creation of node.
- Inside “public” access specifier,
- Give the definition for constructor and destructor.
- Give function declaration.
- Inside the “private” access specifier,
- Declare template class.
- Give function definition for “insert ()”.
- Check if “nodePtr” is null.
- If the condition is true then, insert node.
- Check if value of new node is less than the value of node pointer
- If the condition is true then, Insert node to the left branch by calling the function “insert ()” recursively.
- Else
- Insert node to the right branch by calling the function “insert ()” recursively.
- Check if “nodePtr” is null.
- Declare template class.
- Give function definition for “insert_Node ()”.
- Create a pointer for new node.
- Assign the value to the new node.
- Make left and right node as null
- Call the function “insert ()” by passing parameters “root” and “newNode”.
- Declare template class.
- Give function definition for “destroy_SubTree ()”.
- Check if the node pointer points to left node
- Call the function recursively to delete the left sub tree.
- Check if the node pointer points to the right node
- Call the function recursively to delete the right sub tree.
- Delete the node pointer.
- Check if the node pointer points to left node
- Declare template class.
- Give function definition for “search_Node ()”.
- Assign false to the Boolean variable “status”.
- Assign root pointer to the “nodePtr”.
- Do until “nodePtr” exists.
- Check if the value of node pointer is equal to “num”.
- Assign true to the Boolean variable “status”
- Check if the number is less than the value of node pointer.
- Assign left node pointer to the node pointer.
- Else
- Assign right node pointer to the node pointer.
- Check if the value of node pointer is equal to “num”.
- Return the Boolean variable.
- Declare template class.
- Give function definition for “remove ()”.
- Call the function “delete_Node ()”
- Declare template class.
- Give function definition for “delete_Node ()”
- Check if the number is less than the node pointer value.
- Call the function “delete_Node ()” recursively.
- Check if the number is greater than the node pointer value.
- Call the function “delete_Node ()” recursively.
- Else,
- Call the function “make_Deletion ()”.
- Check if the number is less than the node pointer value.
- Declare template class.
- Give function definition for “make_Deletion ()”
- Create pointer named “tempPtr”.
- Check if the nodePtr is null.
- If the condition is true then, print “Cannot delete empty node.”
- Check if right node pointer is null.
- If the condition is true then,
- Make the node pointer as the temporary pointer.
- Reattach the left node child.
- Delete temporary pointer.
- If the condition is true then,
- Check is left node pointer is null
- If the condition is true then,
- Make the node pointer as the temporary pointer.
- Reattach the right node child.
- Delete temporary pointer.
- If the condition is true then,
- Else,
- Move right node to temporary pointer
- Reach to the end of left-Node using “while” condition.
- Assign left node pointer to temporary pointer.
- Reattach left node sub tree.
- Make node pointer as the temporary pointer.
- Reattach right node sub tree
- Delete temporary pointer.
- Declare template class.
- Give function definition for “display_InOrder ()”.
- Check if the node pointer exists.
- Call the function “display_InOrder ()” recursively.
- Print the value
- Call the function “display_InOrder ()” recursively.
- Check if the node pointer exists.
- Declare template class.
- Give function definition for “display_PreOrder ()”.
- Print the value.
- Call the function “display_PreOrder ()” recursively.
- Call the function “display_PreOrder ()” recursively.
- Declare template class.
- Give function definition for “display_PostOrder ()”.
- Call the function “display_PostOrder ()” recursively.
- Call the function “display_PostOrder ()” recursively.
- Print value
- Declare template class.
- Give function definition for “numNodes ()”.
- Call the function “count_Nodes ()”.
- Declare template class.
- Give function definition for “count_Nodes ()”.
- Declare a variable named “count”.
- Check if the node pointer is null
- Assign 0 to count.
- Else,
- Call the function “count_Nodes ()” recursively.
- Return the variable “count”.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
.NET Interactive
Solving Sudoku using Grover's Algorithm
We will now solve a simple problem using Grover's algorithm, for which we do not necessarily know the solution beforehand. Our problem is a 2x2 binary sudoku, which in our case has two simple rules:
•No column may contain the same value twice
•No row may contain the same value twice
If we assign each square in our sudoku to a variable like so:
1
V V₁
V3
V2
we want our circuit to output a solution to this sudoku.
Note that, while this approach of using Grover's algorithm to solve this problem is not practical (you can probably find the solution in your head!), the purpose of this example is to demonstrate the
conversion of classical decision problems into oracles for Grover's algorithm.
Turning the Problem into a Circuit
We want to create an oracle that will help us solve this problem, and we will start by creating a circuit that identifies a correct solution, we simply need to create a classical function on a quantum circuit
that…
using r language
8. Cash RegisterThis exercise assumes you have created the RetailItem class for Programming Exercise 5. Create a CashRegister class that can be used with the RetailItem class. The CashRegister class should be able to internally keep a list of RetailItem objects. The class should have the following methods:
A method named purchase_item that accepts a RetailItem object as an argument. Each time the purchase_item method is called, the RetailItem object that is passed as an argument should be added to the list.
A method named get_total that returns the total price of all the RetailItem objects stored in the CashRegister object’s internal list.
A method named show_items that displays data about the RetailItem objects stored in the CashRegister object’s internal list.
A method named clear that should clear the CashRegister object’s internal list.
Demonstrate the CashRegister class in a program that allows the user to select several items for purchase. When the user is ready to check out, the…
Chapter 20 Solutions
EBK STARTING OUT WITH C++
Ch. 20.1 - Prob. 21.1CPCh. 20.1 - Prob. 21.2CPCh. 20.1 - Prob. 21.3CPCh. 20.1 - Prob. 21.4CPCh. 20.1 - Prob. 21.5CPCh. 20.1 - Prob. 21.6CPCh. 20.2 - Prob. 21.7CPCh. 20.2 - Prob. 21.8CPCh. 20.2 - Prob. 21.9CPCh. 20.2 - Prob. 21.10CP
Ch. 20.2 - Prob. 21.11CPCh. 20.2 - Prob. 21.12CPCh. 20 - Prob. 1RQECh. 20 - Prob. 2RQECh. 20 - Prob. 3RQECh. 20 - Prob. 4RQECh. 20 - Prob. 5RQECh. 20 - Prob. 6RQECh. 20 - Prob. 7RQECh. 20 - Prob. 8RQECh. 20 - Prob. 9RQECh. 20 - Prob. 10RQECh. 20 - Prob. 11RQECh. 20 - Prob. 12RQECh. 20 - Prob. 13RQECh. 20 - Prob. 14RQECh. 20 - Prob. 15RQECh. 20 - Prob. 16RQECh. 20 - Prob. 17RQECh. 20 - Prob. 18RQECh. 20 - Prob. 19RQECh. 20 - Prob. 20RQECh. 20 - Prob. 21RQECh. 20 - Prob. 22RQECh. 20 - Prob. 23RQECh. 20 - Prob. 24RQECh. 20 - Prob. 25RQECh. 20 - Prob. 1PCCh. 20 - Prob. 2PCCh. 20 - Prob. 3PCCh. 20 - Prob. 4PCCh. 20 - Prob. 5PCCh. 20 - Prob. 6PCCh. 20 - Prob. 7PCCh. 20 - Prob. 8PC
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Similar questions
- 5. RetailItem ClassWrite a class named RetailItem that holds data about an item in a retail store. The class should store the following data in attributes: item description, units in inventory, and price. Once you have written the class, write a program that creates three RetailItem objects and stores the following data in them: Description Units in Inventory PriceItem #1 Jacket 12 59.95Item #2 Designer Jeans 40 34.95Item #3 Shirt 20 24.95arrow_forwardFind the Error: class Information: def __init__(self, name, address, age, phone_number): self.__name = name self.__address = address self.__age = age self.__phone_number = phone_number def main(): my_info = Information('John Doe','111 My Street', \ '555-555-1281')arrow_forwardFind the Error: class Pet def __init__(self, name, animal_type, age) self.__name = name; self.__animal_type = animal_type self.__age = age def set_name(self, name) self.__name = name def set_animal_type(self, animal_type) self.__animal_type = animal_typearrow_forward
- Task 2: Comparable Interface and Record (10 Points) 1. You are tasked with creating a Java record of Dog (UML is shown below). The dog record should include the dog's name, breed, age, and weight. You are required to implement the Comparable interface for the Dog record so that you can sort the records based on the dogs' ages. Create a Java record named Dog.java. name: String breed: String age: int weight: double + toString(): String > Dog + compareTo(otherDog: Dog): int > Comparable 2. In the Dog record, establish a main method and proceed to generate an array named dogList containing three Dog objects, each with the following attributes: Dog1: name: "Buddy", breed: "Labrador Retriever", age: 5, weight: 25.5 Dog2: name: "Max", breed: "Golden Retriever", age: 3, weight: 30 Dog3: name: "Charlie", breed: "German Shepherd", age: 2, weight: 22 3. Print the dogs in dogList before sorting the dogList by age. (Please check the example output for the format). • 4. Sort the dogList using…arrow_forwardThe OSI (Open Systems Interconnection) model is a conceptual framework that standardises the functions of a telecommunication or computing system into seven distinct layers, facilitating communication and interoperability between diverse network protocols and technologies. Discuss the OSI model's physical layer specifications when designing the physical network infrastructure for a new office.arrow_forwardIn a network, information about how to reach other IP networks or hosts is stored in a device's routing table. Each entry in the routing table provides a specific path to a destination, enabling the router to forward data efficiently across the network. The routing table contains key parameters determining the available routes and how traffic is directed toward its destination. Briefly explain the main parameters that define a routing entry.arrow_forward
- You are troubleshooting a network issue where an employee's computer cannot connect to the corporate network. The computer is connected to the network via an Ethernet cable that runs to a switch. Suspecting a possible layer 1 or layer 2 problem, you decide to check the LED status indicators on both the computer's NIC and the corresponding port on the switch. Describe five LED link states and discuss what each indicates to you as a network technician.arrow_forwardYou are a network expert tasked with upgrading the network infrastructure for a growing company expanding its operations across multiple floors. The new network setup needs to support increased traffic and future scalability and provide flexibility for network management. The company is looking to implement Ethernet switches to connect various devices, including workstations, printers, and IP cameras. As part of your task, you must select the appropriate types of Ethernet switches to meet the company's needs. Evaluate the general Ethernet switch categories you would consider for this project, including their features and how they differ.arrow_forwardYou are managing a Small Office Home Office (SOHO) network connected to the Internet via a fibre link provided by your Internet Service Provider (ISP). Recently, you have noticed a significant decrease in Internet speed, and after contacting your ISP, they confirmed that no issues exist on their end. Considering that the problem may lie within your local setup, identify three potential causes of the slow Internet connection, focusing on physical factors affecting the fibre equipment.arrow_forward
- Your organisation has recently installed a new network in a building it has acquired. As the network administrator, you have set up a dedicated telecommunications room to house all the rack-mounted servers, switches, and routers. To ensure optimal performance and longevity of the equipment, you need to monitor certain environmental factors in the room. Identify the environmental factors that should be monitored and explain why each is important to maintain the proper functioning of the telecommunications equipment.arrow_forwardYour organisation is preparing to move into a newly constructed office building that has never been occupied or wired for network services. As the network administrator, your manager has tasked you with designing a structured cabling plan that will support data, voice, and other network services across all building floors. The cabling plan must account for future expansion, efficient data transmission, and compliance with industry standards. Identify and explain the different subsystems you would include in the structured cabling scheme, following the ANSI/TIA/EIA 568 standard.arrow_forwardAs a technical advisor responsible for designing a network in a newly constructed building, you have decided to utilise twisted pair cables to efficiently deliver data and voice services. Given the specific requirements for connectivity in this setup, identify the appropriate connector types that can be used with twisted pair cables, explaining how each connector works in detail.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- C++ Programming: From Problem Analysis to Program...Computer ScienceISBN:9781337102087Author:D. S. MalikPublisher:Cengage LearningNew Perspectives on HTML5, CSS3, and JavaScriptComputer ScienceISBN:9781305503922Author:Patrick M. CareyPublisher:Cengage LearningProgramming Logic & Design ComprehensiveComputer ScienceISBN:9781337669405Author:FARRELLPublisher:Cengage
- EBK JAVA PROGRAMMINGComputer ScienceISBN:9781337671385Author:FARRELLPublisher:CENGAGE LEARNING - CONSIGNMENTC++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology PtrSystems ArchitectureComputer ScienceISBN:9781305080195Author:Stephen D. BurdPublisher:Cengage Learning

C++ Programming: From Problem Analysis to Program...
Computer Science
ISBN:9781337102087
Author:D. S. Malik
Publisher:Cengage Learning

New Perspectives on HTML5, CSS3, and JavaScript
Computer Science
ISBN:9781305503922
Author:Patrick M. Carey
Publisher:Cengage Learning
Programming Logic & Design Comprehensive
Computer Science
ISBN:9781337669405
Author:FARRELL
Publisher:Cengage

EBK JAVA PROGRAMMING
Computer Science
ISBN:9781337671385
Author:FARRELL
Publisher:CENGAGE LEARNING - CONSIGNMENT

C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr

Systems Architecture
Computer Science
ISBN:9781305080195
Author:Stephen D. Burd
Publisher:Cengage Learning