Astronomy
1st Edition
ISBN: 9781938168284
Author: Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 20, Problem 27E
We can detect 21-cm emission from other galaxies as well as from our own Galaxy. However, 21-cm emission from our own Galaxy fills most of the sky, so we usually see both at once. How can we distinguish the extragalactic 21-cm emission from that arising in our own Galaxy? (Hint: Other galaxies are generally moving relative to the Milky Way.)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The Andromeda Galaxy, M31, is the closest large spiral galaxy to our Milky Way. When we look at its chemical spectrum, we see that its hydrogen alpha emission line (Hα) has an observed wavelength of λobs = 655 nm.-Calculate z, being careful with the sign.-How fast is it moving in km/s?-Is it redshifted or blueshifted? Is it moving towards or away from us?
answer to three significant figures.
The figure below shows the spectra of two galaxies A and B.
A galaxy's rotation curve is a measure of the orbital speed of stars as a function of distance
from the galaxy's centre. The fact that rotation curves are primarily flat at large galactocen-
tric distances (vrot(r) ~ constant) is the most common example of why astronomer's believe
dark matter exists. Let's work out why!
Assuming that each star in a given galaxy has a circular orbit, we know that the accelera-
tion due to gravity felt by each star is due to the mass enclosed within its orbital radius r and
equal to v?/r. Here, ve is the circular orbit velocity of the star. (a) Show that the expected
relationship between ve and r due to the stellar halo (p(r) xr-3.5) does not produce a flat
rotation curve. (b) Show that a p(r) ∞ r¯² density profile successfully produces a flat ro-
tation curve and must therefore be the general profile that dark matter follows in our galaxy.
Chapter 20 Solutions
Astronomy
Ch. 20 - Identify several dark nebulae in photographs in...Ch. 20 - Why do nebulae near hot stars look red? Why do...Ch. 20 - Describe the characteristics of the various kinds...Ch. 20 - Prepare a table listing the different ways in...Ch. 20 - Describe how the 21-cm line of hydrogen is formed....Ch. 20 - Describe the properties of the dust grains found...Ch. 20 - Why is it difficult to determine where cosmic rays...Ch. 20 - What causes reddening of starlight? Explain how...Ch. 20 - Why do molecules, including H2 and more complex...Ch. 20 - Why can’t we use visible light telescopes to study...
Ch. 20 - The mass of the interstellar medium is determined...Ch. 20 - Where does interstellar dust come from? How does...Ch. 20 - Figure 20.2 shows a reddish glow around the star...Ch. 20 - If the red glow around Antares is indeed produced...Ch. 20 - Even though neutral hydrogen is the most abundant...Ch. 20 - The terms H II and H2 are both pronounced “H two.”...Ch. 20 - Suppose someone told you that she had discovered H...Ch. 20 - Describe the spectrum of each of the following: A....Ch. 20 - According to the text, a star must be hotter than...Ch. 20 - From the comments in the text about which kinds of...Ch. 20 - One way to calculate the size and shape of the...Ch. 20 - New stars form in regions where the density of gas...Ch. 20 - Thinking about the topics in this chapter, here is...Ch. 20 - Stars form in the Milky Way at a rate of about 1...Ch. 20 - The 21-cm line can be used not just to find out...Ch. 20 - Astronomers recently detected light emitted by a...Ch. 20 - We can detect 21-cm emission from other galaxies...Ch. 20 - We have said repeatedly that blue light undergoes...Ch. 20 - Suppose that, instead of being inside the Local...Ch. 20 - Suppose that, instead of being inside the Local...Ch. 20 - A molecular cloud is about 1000 times denser than...Ch. 20 - Would you expect to be able to detect an H II...Ch. 20 - Suppose that you gathered a ball of interstellar...Ch. 20 - At the average density of the interstellar medium,...Ch. 20 - Consider a grain of sand that contains 1 mg of...Ch. 20 - H II regions can exist only if there is a nearby...Ch. 20 - In the text, we said that the five-times ionized...Ch. 20 - Dust was originally discovered because the stars...Ch. 20 - How would the density inside a cold cloud (T=10K)...Ch. 20 - The text says that the Local Fluff, which...
Additional Science Textbook Solutions
Find more solutions based on key concepts
How many oxygen atoms are on the reactant side of this chemical equation? K2CO3(aq)+Pb(NO3)2(aq)2KNO3(aq)+PbCO3...
Introductory Chemistry (6th Edition)
1.3 Obtain a bottle of multivitamins and read the list of ingredients. What are four chemicals from the list?
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
MAKE CONNECTIONS In Concept 20.2, you learned about genome-wide association studies. Explain how these studies...
Campbell Biology (11th Edition)
Calculate the lattice energy of CaCl2 using a Born-Haber cycle and data from Appendices F and L and Table 7.5. ...
Chemistry & Chemical Reactivity
What percentage of Earths land surface do glaciers presently cover? ____________
Applications and Investigations in Earth Science (9th Edition)
The following data were obtained from a disk-diffusion test. Antibiotic Zone of Inhibition A 15 mm B 0 mm c 7 m...
Microbiology: An Introduction
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Hi, can you please assist with C? & For reference: A = 0.0011 m B = 1.807 x 10^-22 Jarrow_forwardFigure 2 shows the "rotation curve" of NGC 2742. It plots the “radial velocity (V)" (how fast material is moving either toward or away from us) that is measured for objects at different distances (R = radius") from the center of the galaxy. The center of the galaxy is at 0 kpc (kiloparsecs) with a speed of 9 km/sec away from us. (These velocities have been corrected for the observed tilt of the galaxy and represent true orbital velocities of the stars and gas.) 200 100 U4779 -100 As you can see, one side of the galaxy is moving with a negative velocity (spinning toward us), while the other side has a positive velocity (spinning away from us). Using Newton's gravity equation, we will be able to determine the gravitational mass of the entire galaxy and how the mass varies versus distance from the galaxy's center. -200 -8 8 -4 Radius (kpc) Read the following text carefully and follow the instructions: Select five radii spaced evenly from 0-10 kpc across the galaxy. Your selections should…arrow_forwardAn observational survey of distant galaxies is undertaken that involves measuring their distances using cepheid variables and red-shifts using spectroscopy. Explain how cepheid variables can be used to measure the distances to galaxies. A spectral line is observed whose wavelength in the laboratory is de length of this spectral line observed in each galaxy, Xo, is listed in the table, along with the distance, d, to the galaxy. Determine the red-shift and the recession velocity of each galaxy and tabulate your results by making a copy of the table and filling in the blank spaces. Sketch a Hubble diagram using your results and determine the value of the Hubble constant Ho in units of km s-1 Mpc. 650 nm. The wave- Galaxy 1 652.69 Galaxy 2 Galaxy 3 Galaxy 4 Galaxy 5 653.01 do (nm) d (Mpc) 658.54 662.18 681.63 17 19 54 77 200 v (km s-1)arrow_forward
- 1. The current (critical) density of our universe is pe = 10-26kg/m³. Assume the universe is filled with cubes with equal size that each contain one person of m = 100kg. What would the length of the side of such a cube have to be in order to give the correct critical density? How many hydrogen atoms would you need in a box of 1 m³ to reach the critical density? The matter we know, which consists mostly of hydrogen, constitutes only 4.8% of the current critical energy density of our universe. So how many hydrogen atoms are actually in a box of 1 m3 in our universe? Deep space is very empty and a much better vacuum than we can obtain on earth in a laboratory.arrow_forwardYou observe the H-alpha line of Hydrogen in a distant galaxy to have a wavelength of 754.4 nm. What is the radial velocity of the galaxy? Hint: The rest wavelength of H-alpha is 656 nm. I have to use the forumla mentioned in the photo I shared with this post.arrow_forwardAre the galaxies red-shifting or blue-shifting? Explain. (You may find the big-bang theory helpful). Andromeda galaxy is currently approaching our galaxy with a radial velocity of 266 km/sec. How far is our galaxy from Andromeda? (Hubble’s constant, H, is 73 km/sec/MParsec). When can the two galaxies be anticipated to collide?arrow_forward
- Since you are made mostly of water, you are very efficient at absorbing microwave photons. If you were in intergalactic space, how many CMB photons would you absorb per second? (The assumption that you are spherical will be useful.) What is the rate, in watts, at which you would absorb radiative energy from the CMB?arrow_forwardCosmic Microwave Background 8. The Cosmic Microwave Background (CMB) acts as a perfect black body whose energy spectrum(energy density per unit volume per unit frequency) is given by the expression : (image attached)arrow_forward1.2 1.0 0.8 0.6 Cosmic background data from COBE 0.4 0.2 0.0 0.5 10 Wavelength A in mm c) Background (CMB) undertaken by the COBE satellite. Use this diagram to estimate the current temperature of the CMB. Based on your estimate, what would the temperature of the CMB have been at a redshift of z = 5000? The left hand diagram above shows the results from observations of the Cosmic Microwave Radiated Intensity per Unit Wavelength (16° Watts/m per mm)arrow_forward
- Explain, which factors will be resulted the shape of Brillouin zone (BZ) in k-space.arrow_forwardThe redshift measurements of spectra from magnesium and iron are important in understanding distant galaxies. What are the Kα and Lα wavelengths for magnesium and iron?arrow_forwardAssume that we have measured the distance to a close by galaxy, with apparent magnitude m1 = 6, to be d1 = 1Mpc. We now assume that all galaxies are similar and have therefore the same intrinsic or absolute, luminosity. Then measuring the apparent magnitude of a second galaxy to be m2 = 11, estimate the distance to that galaxy. Please answer within 90 minutes.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning