Physics for Scientists and Engineers
Physics for Scientists and Engineers
10th Edition
ISBN: 9781337553278
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 20, Problem 27AP

(a)

To determine

The average speedof a molecules.

(a)

Expert Solution
Check Mark

Answer to Problem 27AP

Answer:The average speed of a molecules is 3.90km/s.

Explanation of Solution

Speed of molecule 1 is 3.00km/s, Speed of molecule 2 is 4.00km/s, Speed of molecule 3 is 5.80km/s, Speed of molecule 4 is 2.50km/s, Speed of molecule 5 is 3.60km/s, Speed of molecule 6 is 1.90km/s, Speed of molecule 7 is 3.80km/s, Speed of molecule 8 is 6.60km/s.

Write the expression for summation of the speeds of the molecules.

    i=1Nvi=(v1)+(v2)+(v3)+(v4)+(v5)+(v6)+(v7)+(v8)                       (1)

Here,

v1 is the Speed of molecule 1.

v2 is the Speed of molecule 2.

v3 is the Speed of molecule 3.

v4 is the Speed of molecule 4.

v5 is the Speed of molecule 5.

v6 is the Speed of molecule 6.

v7 is the Speed of molecule 7.

v8 is the Speed of molecule 8.

Substitute 3.00km/s for v1, 4.00km/s for v2, 5.80km/s for v3, 2.50km/s for v4, 3.60km/s for v5, 1.90km/s for v6, 3.80km/s for v7, 6.60km/s for v8 in equation (1) to find i=1Nvi.

    i=1Nvi={(3.00km/s)+(4.00km/s)+(5.80km/s)+(2.50km/s)+(3.60km/s)+(1.90km/s)+(3.80km/s)+(6.60km/s)}=31.20km/s

Thus, the value of summation of the speeds of the molecules is 31.20km/s.

Write the formula to calculate the average speed of a molecules.

    v¯=i=1NviN (2)

Here,

v¯ is the average speed of a molecules.

i=1Nvi is the summation of the speeds of the molecules.

N is the number of speeds of molecule.

Substitute 31.20km/s for i=1Nvi, 8 for N in equation (2) to find v¯.

    v¯=31.20km/s8=3.90km/s

Conclusion:

Therefore, the average speed of a molecules is 3.90km/s.

(b)

To determine

The root mean square speed of a molecules.

(b)

Expert Solution
Check Mark

Answer to Problem 27AP

Answer:The root mean square speed of a molecules is 4.18km/s.

Explanation of Solution

 Speed of molecule 1 is 3.00km/s, Speed of molecule 2 is 4.00km/s, Speed of molecule 3 is 5.80km/s, Speed of molecule 4 is 2.50km/s, Speed of molecule 5 is 3.60km/s, Speed of molecule 6 is 1.90km/s, Speed of molecule 7 is 3.80km/s, Speed of molecule 8 is 6.60km/s.

Write the expression for summation of the square of speeds of the molecules.

    i=1Nvi2=(v1)2+(v2)2+(v3)2+(v4)2+(v5)2+(v6)2+(v7)2+(v8)2 (3)

Substitute 3.00km/s for v1, 4.00km/s for v2, 5.80km/s for v3, 2.50km/s for v4, 3.60km/s for v5, 1.90km/s for v6, 3.80km/s for v7, 6.60km/s for v8 in equation (3) to find i=1Nvi2.

    i=1Nvi2={(3.00km/s)2+(4.00km/s)2+(5.80km/s)2+(2.50km/s)2+(3.60km/s)2+(1.90km/s)2+(3.80km/s)2+(6.60km/s)2}=139.46km/s

Thus, the value of summation of the square of speeds of the molecules is 139.46km/s.

Write the formula to calculate the root mean square speed of a molecules.

    vrms=i=1Nvi2N                           (4)

Here,

vrms is the root mean square speed of a molecules.

i=1Nvi2 is the summation of the square of speeds of the molecules.

N is the number of speeds of molecule.

Substitute 139.46km/s for i=1Nvi2, 8 for N in equation (4) to find vrms,

    vrms=139.46km/s8=4.1752km/s4.18km/s

Conclusion:

Therefore, the root mean square speed of a molecules is 4.18km/s.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
If the block does reach point B, how far up the curved portion of the track does it reach, and if it does not, how far short of point B does the block come to a stop? (Enter your answer in m.)
Truck suspensions often have "helper springs" that engage at high loads. One such arrangement is a leaf spring with a helper coil spring mounted on the axle, as shown in the figure below. When the main leaf spring is compressed by distance yo, the helper spring engages and then helps to support any additional load. Suppose the leaf spring constant is 5.05 × 105 N/m, the helper spring constant is 3.50 × 105 N/m, and y = 0.500 m. Truck body yo Main leaf spring -"Helper" spring Axle (a) What is the compression of the leaf spring for a load of 6.00 × 105 N? Your response differs from the correct answer by more than 10%. Double check your calculations. m (b) How much work is done in compressing the springs? ☑ Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. J
A spring is attached to an inclined plane as shown in the figure. A block of mass m = 2.71 kg is placed on the incline at a distance d = 0.285 m along the incline from the end of the spring. The block is given a quick shove and moves down the incline with an initial speed v = 0.750 m/s. The incline angle is = 20.0°, the spring constant is k = 505 N/m, and we can assume the surface is frictionless. By what distance (in m) is the spring compressed when the block momentarily comes to rest? m m 0 k wwww

Chapter 20 Solutions

Physics for Scientists and Engineers

Ch. 20 - In a period of 1.00 s, 5.00 1023 nitrogen...Ch. 20 - A 7.00-L vessel contains 3.50 moles of gas at a...Ch. 20 - Calculate the change in internal energy of 3.00...Ch. 20 - Prob. 10PCh. 20 - In a constant-volume process, 209 J of energy is...Ch. 20 - A vertical cylinder with a heavy piston contains...Ch. 20 - A 1.00-L insulated bottle is full of tea at 90.0C....Ch. 20 - A certain molecule has f degrees of freedom. Show...Ch. 20 - You are working for an automobile tire company....Ch. 20 - Why is the following situation impossible? A team...Ch. 20 - You and your younger brother are designing an air...Ch. 20 - During the compression stroke of a certain...Ch. 20 - Air in a thundercloud expands as it rises. If its...Ch. 20 - Why is the following situation impossible? A new...Ch. 20 - Air (a diatomic ideal gas) at 27.0C and...Ch. 20 - Prob. 22PCh. 20 - Prob. 23PCh. 20 - Prob. 24PCh. 20 - Prob. 25PCh. 20 - The law of atmospheres states that the number...Ch. 20 - Prob. 27APCh. 20 - Prob. 28APCh. 20 - The dimensions of a classroom are 4.20 m 3.00 m ...Ch. 20 - Prob. 30APCh. 20 - The Earths atmosphere consists primarily of oxygen...Ch. 20 - Review. As a sound wave passes through a gas, the...Ch. 20 - Prob. 33APCh. 20 - In a cylinder, a sample of an ideal gas with...Ch. 20 - As a 1.00-mol sample of a monatomic ideal gas...Ch. 20 - A sample consists of an amount n in moles of a...Ch. 20 - The latent heat of vaporization for water at room...Ch. 20 - A vessel contains 1.00 104 oxygen molecules at...Ch. 20 - Prob. 39APCh. 20 - Prob. 40APCh. 20 - Prob. 41APCh. 20 - On the PV diagram for an ideal gas, one isothermal...Ch. 20 - Prob. 43APCh. 20 - Prob. 44APCh. 20 - Prob. 45CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning