College Physics
1st Edition
ISBN: 9781938168048
Author: Paul Peter Urone, OpenStax, Roger Hinrichs
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 20, Problem 23PE
A power transmission line is hung from metal towers with glass insulators having a resistance of 1.00×109 O. What current flows through the insulator if the voltage is 200 kV? (Some high-voltage lines are DC.)
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
The magnitude of the net force exerted in the x direction on a 3.00-kg particle varies in time as shown in the figure below.
F(N)
4
3
A
2
t(s)
1
2 3
45
(a) Find the impulse of the force over the 5.00-s time interval.
==
N⚫s
(b) Find the final velocity the particle attains if it is originally at rest.
m/s
(c) Find its final velocity if its original velocity is -3.50 î m/s.
V₁
m/s
(d) Find the average force exerted on the particle for the time interval between 0 and 5.00 s.
=
avg
N
••63 SSM www In the circuit of
Fig. 27-65, 8 = 1.2 kV, C = 6.5 µF,
R₁
S
R₂
R3
800
C
H
R₁ = R₂ = R3 = 0.73 MQ. With C
completely uncharged, switch S is
suddenly closed (at t = 0). At t = 0,
what are (a) current i̟ in resistor 1,
(b) current 2 in resistor 2, and
(c) current i3 in resistor 3? At t = ∞o
(that is, after many time constants), what are (d) i₁, (e) i₂, and (f) iz?
What is the potential difference V2 across resistor 2 at (g) t = 0 and
(h) t = ∞o? (i) Sketch V2 versus t between these two extreme times.
Figure 27-65 Problem 63.
Thor flies by spinning his hammer really fast from a leather strap at the end of the handle, letting go, then grabbing it and having it pull him. If Thor wants to reach escape velocity (velocity needed to leave Earth’s atmosphere), he will need the linear velocity of the center of mass of the hammer to be 11,200 m/s. Thor's escape velocity is 33532.9 rad/s, the angular velocity is 8055.5 rad/s^2. While the hammer is spinning at its maximum speed what impossibly large tension does the leather strap, which the hammer is spinning by, exert when the hammer is at its lowest point? the hammer has a total mass of 20.0kg.
Chapter 20 Solutions
College Physics
Ch. 20 - Can a wire carry a current and still be...Ch. 20 - Car batteries are rated in ampere-hours (A h )....Ch. 20 - If two different wires having identical...Ch. 20 - Why are two conducting paths from a voltage source...Ch. 20 - In cars, one battery terminal is connected to the...Ch. 20 - Why isn't a bird sitting on a high-voltage power...Ch. 20 - The IR drop across a resistor means that there is...Ch. 20 - How is the I R drop in a resistor similar to the...Ch. 20 - In which of the three semiconducting materials...Ch. 20 - Does the resistance of an object depend on the...
Ch. 20 - If aluminum and copper wires of the same length...Ch. 20 - Explain why R=R0(1 + a?T) for the temperature...Ch. 20 - Why do incandescent lightbulbs grow dim late in...Ch. 20 - The power dissipated in a resistor is given by P =...Ch. 20 - Give an example of a use of AC power other than in...Ch. 20 - Why do voltage, current, and power go through zero...Ch. 20 - You are riding in a train, gazing into the...Ch. 20 - Using an ohmmeter, a student measures the...Ch. 20 - What are the two major hazards of electricity?Ch. 20 - Why isn’t a short circuit a shock hazard?Ch. 20 - What determines the severity of a shock? Can you...Ch. 20 - An electrified needle is used to burn off warts,...Ch. 20 - Some surgery is performed with high-voltage...Ch. 20 - Some devices often used in bathrooms, such as...Ch. 20 - We are often advised to not flick electric...Ch. 20 - Before working on a power transmission line,...Ch. 20 - Why is the resistance of wet skin so much smaller...Ch. 20 - Could a person on intravenous infusion (an IV) be...Ch. 20 - In view of the small currents that cause shock...Ch. 20 - Note that in Figure 20.28, both the concentration...Ch. 20 - Define depolarization, repolarization, and the...Ch. 20 - Explain the properties of myelinated nerves in...Ch. 20 - What is the current in milliamperes produced by...Ch. 20 - A total of 600 C of charge passes through a...Ch. 20 - What is the current when a typical static charge...Ch. 20 - Find the current when 2.00 nC jumps between your...Ch. 20 - A large lightning bolt had a 20,000-A current and...Ch. 20 - The 200-A current through a spark plug moves 0.300...Ch. 20 - (a) A defibrillator sends a 6.00-A current through...Ch. 20 - During open-heart surgery, a defibrillator can be...Ch. 20 - (a) A defibrillator passes 12.0 A of current...Ch. 20 - A clock battery wears out after moving 10,000 C of...Ch. 20 - The batteries of a submerged non-nuclear submarine...Ch. 20 - Electron guns are used in X-ray tubes. The...Ch. 20 - A large cyclotron directs a beam of He ++ nuclei...Ch. 20 - Repeat the above example on Example 20.3, but for...Ch. 20 - Using the results of the above example on Example...Ch. 20 - A 14-gauge copper wire has a diameter of 1.628 mm....Ch. 20 - SPEAR, a storage ring about 72.0 m in diameter at...Ch. 20 - What current flows through the bulb of a 3.00-V...Ch. 20 - Calculate the effective resistance of a pocket...Ch. 20 - What is the effective resistance of a car’s...Ch. 20 - How many volts are supplied to operate an...Ch. 20 - (a) F ind the voltage drop in an extension cord...Ch. 20 - A power transmission line is hung from metal...Ch. 20 - What is the resistance of a 20.0-m-long piece of...Ch. 20 - The diameter of 0-gauge copper wire is 8.252 mm....Ch. 20 - If the 0.100-mm diameter tungsten filament in a...Ch. 20 - Find the ratio of the diameter of aluminum to...Ch. 20 - What current flows through a 2.54-cm-diameter rod...Ch. 20 - (a) To what temperature must you raise a copper...Ch. 20 - A resistor made of Nichrome wire is used in an...Ch. 20 - Of what material is a resistor made if its...Ch. 20 - An electronic device designed to operate at any...Ch. 20 - a) Of what material is a wire made, if it is 25.0...Ch. 20 - Assuming a constant temperature coefficient of...Ch. 20 - A wire is drawn through a die, stretching it to...Ch. 20 - A copper wire has a resistance of 0.500at 20.0°C,...Ch. 20 - (a) Digital medical thermometers determine...Ch. 20 - Integrated Concepts (a) Redo Exercise 20.25 taking...Ch. 20 - Unreasonable Results (a) To what temperature must...Ch. 20 - What is the power of a 1.00 102 MV lightning boit...Ch. 20 - What power is supplied to the starter motor of a...Ch. 20 - A charge of 4.00 C of charge passes through a...Ch. 20 - How many watts does a flashlight that has 6.00102C...Ch. 20 - Find the power dissipated in each of these...Ch. 20 - Verify that the units of a volt-ampere are watts,...Ch. 20 - Show that the units 1 V2/=1W , as implied by the...Ch. 20 - Show that the units 1 A 2 = 1W, as implied by the...Ch. 20 - Verify the energy unit equivalence that 1 kWh =...Ch. 20 - Electrons in an X-ray tube are accelerated through...Ch. 20 - An electric water heater consumes 5.00 kW for 2.00...Ch. 20 - With a 1200-W toaster, how much electrical energy...Ch. 20 - What would be the maximum cost of a CFL such that...Ch. 20 - Some makes of older cars have 6.00-V electrical...Ch. 20 - Alkaline batteries have the advantage of putting...Ch. 20 - A cauterizer, used to stop bleeding in surgery,...Ch. 20 - The average television is said to be on 6 hours...Ch. 20 - An old lightbulb draws only 50.0 W, rather than...Ch. 20 - -gauge copper wire has a diameter of 9.266 mm....Ch. 20 - Integrated Concepts Cold vaporizers pass a current...Ch. 20 - Integrated Concepts (a) What energy is dissipated...Ch. 20 - Integrated Concepts What current must be produced...Ch. 20 - Integrated Concepts How much time is needed for a...Ch. 20 - Integrated Concepts Hydroelectric generators (see...Ch. 20 - Integrated Concepts (a) Assuming 95.0% efficiency...Ch. 20 - Integrated Concepts A light-rail commuter train...Ch. 20 - Integrated Concepts (a) An aluminum power...Ch. 20 - Integrated Concepts (a) An immersion heater...Ch. 20 - Integrated Concepts (a) What is the cost of...Ch. 20 - Unreasonable Results (a) What current is needed to...Ch. 20 - Unreasonable Results (a) What current is needed to...Ch. 20 - Construct Your Own Problem Consider an electric...Ch. 20 - (a) What is the hot resistance of a 25-W light...Ch. 20 - Certain heavy industrial equipment uses AC power...Ch. 20 - A certain circuit breaker trips when the rms...Ch. 20 - Military aircraft use 400-Hz AC power, because it...Ch. 20 - A North American tourist takes his 25.0-W, 120-V...Ch. 20 - In this problem, you will verify statements made...Ch. 20 - A small office-building air conditioner operates...Ch. 20 - What is the peak power consumption of a 12G-V AC...Ch. 20 - What is the peak current through a 500-W room...Ch. 20 - Two different electrical devices have the same...Ch. 20 - Nichrome wire is used in some radiative heaters....Ch. 20 - Find the time after t = 0 when the instantaneous...Ch. 20 - (a) At what two times in the first period...Ch. 20 - (a) Haw much power is dissipated in a short...Ch. 20 - What voltage is involved in a 1.44-kW short...Ch. 20 - Find the current through a person and identify the...Ch. 20 - While taking a bath, a person touches the metal...Ch. 20 - Foolishly trying to fish a burning piece of bread...Ch. 20 - (a) During surgery, a current as small as 20.0 ?...Ch. 20 - (a) What is the resistance of a 220-V AC short...Ch. 20 - A heart defibrillator passes 10.0 A through a...Ch. 20 - Integrated Concepts A short circuit in a 120-V...Ch. 20 - Construct Your Own Problem Consider a person...Ch. 20 - Integrated Concepts Use the ECG in Figure 20.34 to...Ch. 20 - Integrated Concepts (a) Referring to Figure 20.34,...
Additional Science Textbook Solutions
Find more solutions based on key concepts
41. A hollow metal sphere has 6 cm and 10 cm inner and outer radii, respectively. The surface charge density on...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Match the people in column A to their contribution toward the advancement of microbiology, in column B. Column ...
Microbiology: An Introduction
4. What five specific threats to biodiversity are described in this chapter? Provide an example of each.
Biology: Life on Earth (11th Edition)
Colored aleurone in the kernels of com is due to the dominant allele R. The recessive allele r, when homozygous...
Concepts of Genetics (12th Edition)
2. Whether an allele is dominant or recessive depends on
a. how common the allele is, relative to other alleles...
Campbell Biology: Concepts & Connections (9th Edition)
SYNTHESIZE YOUR KNOWLEDGE Watennelon snow in Antarctica is caused by a species of photosynthetic green algae th...
Campbell Biology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If the room’s radius is 16.2 m, at what minimum linear speed does Quicksilver need to run to stay on the walls without sliding down? Assume the coefficient of friction between Quicksilver and the wall is 0.236.arrow_forwardIn the comics Thor flies by spinning his hammer really fast from a leather strap at the end of the handle, letting go, then grabbing it and having it pull him. If Thor wants to reach escape velocity (velocity needed to leave Earth’s atmosphere), he will need the linear velocity of the center of mass of the hammer to be 11,200 m/s. A) If the distance from the end of the strap to the center of the hammer is 0.334 m, what angular velocity does Thor need to spin his hammer at to reach escape velocity? b) If the hammer starts from rest what angular acceleration does Thor need to reach that angular velocity in 4.16 s? c) While the hammer is spinning at its maximum speed what impossibly large tension does the leather strap, which the hammer is spinning by, exert when the hammer is at its lowest point? The hammer has a total mass of 20.0kg.arrow_forwardThe car goes from driving straight to spinning at 10.6 rev/min in 0.257 s with a radius of 12.2 m. The angular accleration is 4.28 rad/s^2. During this flip Barbie stays firmly seated in the car’s seat. Barbie has a mass of 58.0 kg, what is her normal force at the top of the loop?arrow_forward
- Consider a hoop of radius R and mass M rolling without slipping. Which form of kinetic energy is larger, translational or rotational?arrow_forwardA roller-coaster vehicle has a mass of 571 kg when fully loaded with passengers (see figure). A) If the vehicle has a speed of 22.5 m/s at point A, what is the force of the track on the vehicle at this point? B) What is the maximum speed the vehicle can have at point B, in order for gravity to hold it on the track?arrow_forwardThis one wheeled motorcycle’s wheel maximum angular velocity was about 430 rev/min. Given that it’s radius was 0.920 m, what was the largest linear velocity of the monowheel?The monowheel could not accelerate fast or the rider would start spinning inside (this is called "gerbiling"). The maximum angular acceleration was 10.9 rad/s2. How long, in seconds, would it take it to hit maximum speed from rest?arrow_forward
- If points a and b are connected by a wire with negligible resistance, find the magnitude of the current in the 12.0 V battery.arrow_forwardConsider the two pucks shown in the figure. As they move towards each other, the momentum of each puck is equal in magnitude and opposite in direction. Given that v kinetic energy of the system is converted to internal energy? 30.0° 130.0 = green 11.0 m/s, and m blue is 25.0% greater than m 'green' what are the final speeds of each puck (in m/s), if 1½-½ t thearrow_forwardConsider the blocks on the curved ramp as seen in the figure. The blocks have masses m₁ = 2.00 kg and m₂ = 3.60 kg, and are initially at rest. The blocks are allowed to slide down the ramp and they then undergo a head-on, elastic collision on the flat portion. Determine the heights (in m) to which m₁ and m2 rise on the curved portion of the ramp after the collision. Assume the ramp is frictionless, and h 4.40 m. m2 = m₁ m hm1 hm2 m iarrow_forward
- A 3.04-kg steel ball strikes a massive wall at 10.0 m/s at an angle of 0 = 60.0° with the plane of the wall. It bounces off the wall with the same speed and angle (see the figure below). If the ball is in contact with the wall for 0.234 s, what is the average force exerted by the wall on the ball? magnitude direction ---Select--- ✓ N xarrow_forwardYou are in the early stages of an internship at NASA. Your supervisor has asked you to analyze emergency procedures for extravehicular activity (EVA), when the astronauts leave the International Space Station (ISS) to do repairs to its exterior or perform other tasks. In particular, the scenario you are studying is a failure of the manned-maneuvering unit (MMU), which is a nitrogen-propelled backpack that attaches to the astronaut's primary life support system (PLSS). In this scenario, the astronaut is floating directly away from the ISS and cannot use the failed MMU to get back. Therefore, the emergency plan is to take off the MMU and throw it in a direction directly away from the ISS, an action that will hopefully cause the astronaut to reverse direction and float back to the station. You have the following mass data provided to you: astronaut: 78.1 kg, spacesuit: 36.8 kg, MMU: 115 kg, PLSS: 145 kg. Based on tests performed by astronauts floating "weightless" inside the ISS, the most…arrow_forwardThree carts of masses m₁ = 4.50 kg, m₂ = 10.50 kg, and m3 = 3.00 kg move on a frictionless, horizontal track with speeds of V1 v1 13 m 12 mq m3 (a) Find the final velocity of the train of three carts. magnitude direction m/s |---Select--- ☑ (b) Does your answer require that all the carts collide and stick together at the same moment? ○ Yes Ο Νο = 6.00 m/s to the right, v₂ = 3.00 m/s to the right, and V3 = 6.00 m/s to the left, as shown below. Velcro couplers make the carts stick together after colliding.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning


College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning