
Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 20, Problem 22E
A proton is at the origin and an electron is at the point x = 0.41 nm, y = 0.36 nm. Find the electric force on the proton.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Problem 04.08 (17 points). Answer the following questions related to the figure below.
ථි
R₁
www
R₂
E
R₁
www
ли
R₁
A Use Kirchhoff's laws to calculate the currents through each battery and resistor in
terms of R1, R2, E1, & E2.
B Given that all the resistances and EMFs have positive values, if E₁ > E2 and R₁ > R2,
which direction is the current flowing through E₁? Through R₂?
C If E1 E2 and R₁ > R2, which direction is the current flowing through E₁? Through
R2?
A 105- and a 45.0-Q resistor are connected in parallel. When this combination is
connected across a battery, the current delivered by the battery is 0.268 A. When the
45.0-resistor is disconnected, the current from the battery drops to 0.0840 A.
Determine (a) the emf and (b) the internal resistance of the battery.
10
R2
R₁
ww
R₁
Emf
14
Emf
Final circuit
Initial circuit
A ball is shot at an angle of 60° with the ground. What should be the initial velocity of the ball so that it will go inside the ring 8 meters away and 3 meters high. Suppose that you want the ball to be scored exactly at the buzzer, determine the required time to throw and shoot the ball. Full solution and figure if there is.
Chapter 20 Solutions
Essential University Physics (3rd Edition)
Ch. 20.1 - The proton is a composite particle composed of...Ch. 20.2 - Charge q1 is located at x = 1 m, y = 0. What...Ch. 20.3 - A positive point charge is located at the origin...Ch. 20.4 - Far from a charge distribution, you measure an...Ch. 20.5 - An electron, a proton, a deuteron (a neutron...Ch. 20 - Conceptual Example 20.1 shows that the...Ch. 20 - A free neutron is unstable and soon decays to...Ch. 20 - Where in Fig. 20.5 could you put a third charge so...Ch. 20 - Why should the test charge used to measure an...Ch. 20 - Equation 20.3 gives the electric field of a point...
Ch. 20 - Is the electric force on a charged particle always...Ch. 20 - Why does a dipole, which has no net charge,...Ch. 20 - The ring in Example 20.6 carries total charge Q,...Ch. 20 - A spherical balloon is initially uncharged. If you...Ch. 20 - Under what circumstances is the path of a charged...Ch. 20 - Why should there be a force between two dipoles,...Ch. 20 - Dipoles A and B are both located in the field of a...Ch. 20 - Suppose the electron and proton charges differed...Ch. 20 - A typical lightning flash delivers about 25 C of...Ch. 20 - Protons and neutrons are made from combinations of...Ch. 20 - Earth carries a net charge of about 5 105 C. How...Ch. 20 - As they fly, honeybees may acquire electric...Ch. 20 - The electron and proton in a hydrogen atom are...Ch. 20 - An electron at Earths surface experiences a...Ch. 20 - You break a piece of Styrofoam packing material,...Ch. 20 - A charge q is at the point x = 1 m, y = 0 m. Write...Ch. 20 - A proton is at the origin and an electron is at...Ch. 20 - An electron experiences an electric force of 0.61...Ch. 20 - Find the magnitude of the electric force on a...Ch. 20 - A 68-nC charge experiences a 150-mN force in a...Ch. 20 - The electric field inside a cell membrane is 8.0...Ch. 20 - A 1.0-C charge experiences a 10-N electric force...Ch. 20 - The electron in a hydrogen atom is 52.9 pm from...Ch. 20 - In Fig. 20.28, point P is midway between the two...Ch. 20 - The water molecules dipole moment is 6.2 1030Cm....Ch. 20 - The electric field 22 cm from a long wire carrying...Ch. 20 - Find the line charge density on a long wire if the...Ch. 20 - Find the magnitude of the electric field due to a...Ch. 20 - In his famous 1909 experiment that demonstrated...Ch. 20 - How strong an electric field is needed to...Ch. 20 - A proton moving to the right at 3.8l05m/s enters a...Ch. 20 - An electrostatic analyzer like that of Example...Ch. 20 - A 2-g ping-pong ball rubbed against a wool jacket...Ch. 20 - Two charges, one whose magnitude is twice as large...Ch. 20 - A proton is on the x-axis at x = 1.6 nm. An...Ch. 20 - A 9.5C charge is at x = 15cm, y = 5.0cm and a...Ch. 20 - A charge 3q is at the origin, and a charge 2q is...Ch. 20 - A negative charge q lies midway between two...Ch. 20 - In Fig. 20.29, take q1 = 68 C, q2 = 34 C, and q3 =...Ch. 20 - FIGURE 20.20 Problems 44 and 45 In Fig. 20.29,...Ch. 20 - DNA fragments introduced into an electrophoresis...Ch. 20 - A 65-C point charge is at the origin. Find the...Ch. 20 - A 1.0-C charge and a 2.0-C charge are 10 cm apart....Ch. 20 - A proton is at the origin and an ion is at x = 5.0...Ch. 20 - (a) Find an expression for the electric field on...Ch. 20 - A dipole lies on the y-axis and consists of an...Ch. 20 - Show that the field on the x-axis for the dipole...Ch. 20 - Youre 1.44 m from a charge distribution that is...Ch. 20 - Three identical charges q form an equilateral...Ch. 20 - Two identical small metal spheres initially carry...Ch. 20 - Two 38.0-C charges are attached to opposite ends...Ch. 20 - A thin rod lies on the x-axis between x = 0 and x...Ch. 20 - An electron is moving in a circular path around a...Ch. 20 - Find the line charge density on a long wire if a...Ch. 20 - A dipole with dipole moment 1.5 nCm is oriented at...Ch. 20 - You have a job examining patent applications....Ch. 20 - A 5.0-m strand of DNA carries charge +e per nm of...Ch. 20 - A molecule has its dipole moment aligned with a...Ch. 20 - Two identical dipoles, each of charge q and...Ch. 20 - A dipole with charges q and separation 2a is...Ch. 20 - An electron is at the origin, and an ion with...Ch. 20 - Youre taking physical chemistry, and your...Ch. 20 - The electric field on the axis of a uniformly...Ch. 20 - An electric quadrupole consists of two oppositely...Ch. 20 - You measure the electric field on a dipoles axis,...Ch. 20 - A straight wire 10 m long carries 25 C distributed...Ch. 20 - Figure 20.34 shows a thin rod of length L carrying...Ch. 20 - Figure 20.35 shows a thin, uniformly charged disk...Ch. 20 - Use the result of Problem 73 to show that the...Ch. 20 - Use the binomial theorem to show that, for x R,...Ch. 20 - A semicircular loop of radius a carries positive...Ch. 20 - In Example 20.2, find the position on the y-axis...Ch. 20 - A thin rod carries charge Q distributed uniformly...Ch. 20 - A thin rod extends along the x-axis from x = 0 to...Ch. 20 - A rod of length 2L lies on the x-axis, centered at...Ch. 20 - Youre working on the design of an ink-jet printer....Ch. 20 - BIO The human heart consists largely of elongated...Ch. 20 - At a given distance, far from the heart compared...Ch. 20 - The difference between Figs. 20.38a and 20.38b...Ch. 20 - At the instant shown in Fig. 20.38c, theres an...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Choose the best answer to each of the following Explain your reasoning. In the Drake equation, what would flife...
Cosmic Perspective Fundamentals
4. Three groups of nonvascular plants are _______, ______, and _______. Three groups of seedless vascular plant...
Biology: Life on Earth (11th Edition)
What is the anatomical position? Why is it important that you learn this position?
Anatomy & Physiology (6th Edition)
Name the components (including muscles) of the thoracic cage. List the contents of the thorax.
Human Physiology: An Integrated Approach (8th Edition)
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology (7th Edition)
Based on your answers to Questions 2 and 3, which part of the Atlantic basin appears to have opened first?
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Correct answer please. I will upvote.arrow_forwardDefine operational amplifierarrow_forwardA bungee jumper plans to bungee jump from a bridge 64.0 m above the ground. He plans to use a uniform elastic cord, tied to a harness around his body, to stop his fall at a point 6.00 m above the water. Model his body as a particle and the cord as having negligible mass and obeying Hooke's law. In a preliminary test he finds that when hanging at rest from a 5.00 m length of the cord, his body weight stretches it by 1.55 m. He will drop from rest at the point where the top end of a longer section of the cord is attached to the bridge. (a) What length of cord should he use? Use subscripts 1 and 2 respectively to represent the 5.00 m test length and the actual jump length. Use Hooke's law F = KAL and the fact that the change in length AL for a given force is proportional the length L (AL = CL), to determine the force constant for the test case and for the jump case. Use conservation of mechanical energy to determine the length of the rope. m (b) What maximum acceleration will he…arrow_forward
- 9 V 300 Ω www 100 Ω 200 Ω www 400 Ω 500 Ω www 600 Ω ww 700 Ω Figure 1: Circuit symbols for a variety of useful circuit elements Problem 04.07 (17 points). Answer the following questions related to the figure below. A What is the equivalent resistance of the network of resistors in the circuit below? B If the battery has an EMF of 9V and is considered as an ideal batter (internal resistance is zero), how much current flows through it in this circuit? C If the 9V EMF battery has an internal resistance of 2 2, would this current be larger or smaller? By how much? D In the ideal battery case, calculate the current through and the voltage across each resistor in the circuit.arrow_forwardhelparrow_forwardIf the block does reach point B, how far up the curved portion of the track does it reach, and if it does not, how far short of point B does the block come to a stop? (Enter your answer in m.)arrow_forward
- Truck suspensions often have "helper springs" that engage at high loads. One such arrangement is a leaf spring with a helper coil spring mounted on the axle, as shown in the figure below. When the main leaf spring is compressed by distance yo, the helper spring engages and then helps to support any additional load. Suppose the leaf spring constant is 5.05 × 105 N/m, the helper spring constant is 3.50 × 105 N/m, and y = 0.500 m. Truck body yo Main leaf spring -"Helper" spring Axle (a) What is the compression of the leaf spring for a load of 6.00 × 105 N? Your response differs from the correct answer by more than 10%. Double check your calculations. m (b) How much work is done in compressing the springs? ☑ Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. Jarrow_forwardA spring is attached to an inclined plane as shown in the figure. A block of mass m = 2.71 kg is placed on the incline at a distance d = 0.285 m along the incline from the end of the spring. The block is given a quick shove and moves down the incline with an initial speed v = 0.750 m/s. The incline angle is = 20.0°, the spring constant is k = 505 N/m, and we can assume the surface is frictionless. By what distance (in m) is the spring compressed when the block momentarily comes to rest? m m 0 k wwwwarrow_forwardA block of mass m = 2.50 kg situated on an incline at an angle of k=100 N/m www 50.0° is connected to a spring of negligible mass having a spring constant of 100 N/m (Fig. P8.54). The pulley and incline are frictionless. The block is released from rest with the spring initially unstretched. Ө m i (a) How far does it move down the frictionless incline before coming to rest? m (b) What is its acceleration at its lowest point? Magnitude m/s² Direction O up the incline down the inclinearrow_forward
- (a) A 15.0 kg block is released from rest at point A in the figure below. The track is frictionless except for the portion between points B and C, which has a length of 6.00 m. The block travels down the track, hits a spring of force constant 2,100 N/m, and compresses the spring 0.250 m from its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between the block and the rough surface between points B and C. -A 3.00 m B C -6.00 m i (b) What If? The spring now expands, forcing the block back to the left. Does the block reach point B? Yes No If the block does reach point B, how far up the curved portion of the track does it reach, and if it does not, how far short of point B does the block come to a stop? (Enter your answer in m.) marrow_forwardA ball of mass m = 1.95 kg is released from rest at a height h = 57.0 cm above a light vertical spring of force constant k as in Figure [a] shown below. The ball strikes the top of the spring and compresses it a distance d = 7.80 cm as in Figure [b] shown below. Neglecting any energy losses during the collision, find the following. т m a d T m b i (a) Find the speed of the ball just as it touches the spring. 3.34 m/s (b) Find the force constant of the spring. Your response differs from the correct answer by more than 10%. Double check your calculations. kN/marrow_forwardI need help with questions 1-10 on my solubility curve practice sheet. I tried to my best ability on the answers, however, i believe they are wrong and I would like to know which ones a wrong and just need help figuring it out.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY