COLLEGE PHYSICS
COLLEGE PHYSICS
2nd Edition
ISBN: 9781464196393
Author: Freedman
Publisher: MAC HIGHER
bartleby

Videos

Question
Book Icon
Chapter 20, Problem 20QAP
To determine

(a)

Induced emf at t < 0 s

Expert Solution
Check Mark

Answer to Problem 20QAP

Induced emf at t < 0 s= 0 T

Explanation of Solution

Given info:

  Number of turns =30diameter of the coil =0.6 mmagnetic field = 1.0 T

Formula used:

  A=πr2A=arear=radiusΦ=NBAΦ=magnetic fluxN=number of turnsε=dΦdtε= emft= time

Calculation:

  radius=0.6 m2=0.3 m

  By substituting,ε=dΦdtε=ddt(NBπr2)ε=Nπr2dBdtε=-Nπr2(B2B1)dtMagnetic field is constant when t < 0 sdB = 0,ε=0

Conclusion:

Induced emf at t < 0 s= 0 T

To determine

(b)

Induced emf at t =5.0 s

Expert Solution
Check Mark

Answer to Problem 20QAP

Induced emf at t =5.0 s= 2.54 mV

Explanation of Solution

Given info:

  Number of turns =30diameter of the coil =0.06 mmagnetic field = 1.0 Tmagnetic field is increased to 1.3 T in 10 s

Formula used:

  A=πr2A=arear=radiusΦ=NBAN=number of turnsε=dΦdtε= emft= time

Calculation:

  radius=0.06 m2=0.03 mMagnetic field at 5 s = 1.3 T - 1.0 T10 s*5 s+1.0 T=1.15 T

  By substituting,ε=dΦdtε=ddt(NBπr2)ε=Nπr2dBdtε=-Nπr2(1.15 T1.00 T)dtε=-30*3.14*(0.03 m)2(1.15 T1.00 T)1 sε=2.54 mV

Conclusion:

Induced emf at t =5.0 s= 2.54 mV

To determine

(c)

Induced emf at t < 10 s

Expert Solution
Check Mark

Answer to Problem 20QAP

Induced emf at t < 10 s= 0 T

Explanation of Solution

Given info:

  Number of turns =30diameter of the coil =0.6 mmagnetic field = 1.0 T

Formula used:

  A=πr2A=arear=radiusΦ=NBAN=number of turnsε=dΦdtε= emft= time

Calculation:

  radius=0.6 m2=0.3 m

  By substituting,ε=dΦdtε=ddt(NBπr2)ε=Nπr2dBdtε=-Nπr2(B2B1)dtMagnetic field is constant after 10 sdB = 0,ε=0

Conclusion:

Induced emf at t < 10 s= 0 T

To determine

(d)

Plot the magnetic field and induced emf as functions of time

Expert Solution
Check Mark

Answer to Problem 20QAP

  COLLEGE PHYSICS, Chapter 20, Problem 20QAP , additional homework tip  1

  COLLEGE PHYSICS, Chapter 20, Problem 20QAP , additional homework tip  2

Explanation of Solution

Given info:

    Time (s)Magnetic field (T)induced emf (V)
    -1010
    -510
    010
    11.030.0025434
    21.060.0025434
    31.090.0025434
    41.120.0025434
    51.150.0025434
    61.180.0025434
    71.210.0025434
    81.240.0025434
    91.270.0025434
    101.30.0025434
    151.30
    201.30

Formula used:

  A=πr2A=arear=radiusΦ=NBAN=number of turnsε=dΦdtε= emft= time

Calculation:

emf at 1 s as shown below, all the emf values were calculated like that by substituting the magnetic field at particular time.

  B at 1 s =1.03 TBy substituting,ε=dΦdtε=ddt(NBπr2)ε=Nπr2dBdtε=-30*3.14*(0.03 m)2(1.03 T1.00 T)1 sε=2.54 mV

Conclusion:

Graphs were drawn in the answer section.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A girl launches a toy rocket from the ground. The engine experiences an average thrust of 5.26 N. The mass of the engine plus fuel before liftoff is 25.4 g, which includes fuel mass of 12.7 g. The engine fires for a total of 1.90 s. (Assume all the fuel is consumed.) (a) Calculate the average exhaust speed of the engine (in m/s). m/s (b) This engine is positioned in a rocket body of mass 70.0 g. What is the magnitude of the final velocity of the rocket (in m/s) if it were to be fired from rest in outer space with the same amount of fuel? Assume the fuel burns at a constant rate. m/s
Two objects of masses m₁ 0.48 kg and m₂ = 0.86 kg are placed on a horizontal frictionless surface and a compressed spring of force constant k 260 N/m is placed between them as in figure (a). Neglect the mass of the spring. The spring is not attached to either object and is compressed a distance of 9.4 cm. If the objects are released from rest, find the final velocity of each object as shown in figure (b). (Let the positive direction be to the right. Indicate the direction with the sign of your answer.) m/s V1 V2= m1 m/s k m2 a す。 k m2 m1 b
Sand from a stationary hopper falls on a moving conveyor belt at the rate of 4.90 kg/s as shown in the figure below. The conveyor belt is supported by frictionless rollers and moves at a constant speed of v = 0.710 m/s under the action of a constant horizontal external force F by the motor that drives the belt. Fext i (a) Find the sand's rate of change of momentum in the horizontal direction. (b) Find the force of friction exerted by the belt on the sand. (c) Find the external force ext' (d) Find the work done by F in 1 s. ext (e) Find the kinetic energy acquired by the falling sand each second due to the change in its horizontal motion. ext supplied
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY