
Concept explainers
A suitable thickness of the concrete pavement if the working stress of the concrete is

Answer to Problem 20P
The suitable depth of concrete pavement is
Explanation of Solution
Given:
Design life is
Annual rate of traffic growth is
Sub grade
Stabilized sub-base is of
Modulus of rupture of the concrete is
Traffic volume data on the highway indicate that the AADT during the first year of operation is
The pavement has aggregate interlock joints (no dowels) and a concrete shoulder.
Formula used:
The design equivalent single axle load is given by,
Here,
The total ESAL is given by,
Here,
The stress ratio is given by,
Here,
The damage percent is given by,
Here,
Calculation:
The design equivalent single axle load for
Substitute
The design equivalent single axle load for
Substitute
The design headwater depth is calculated as,
Substitute
The sub grade value of
From table 20.22, "Deign
Assume a slab
From table 20.24, "Equivalent stress values for single axles and tandem axles" of book "Traffic and highway engineering" equivalent stress values can be obtained and for
The stress ratio is calculated as,
Substitute
From table 20.27, "Erosion factors for single axles and tandem axles (doweled joint, concrete shoulder" of book "Traffic and highway engineering" for
From figure 20.26, "Allowable Load Repetitions for Fatigue Analysis Based on Stress Ratio" of book "Traffic and highway engineering" for
Thus, the Fatigue analysis for
From figure 20.27, "Allowable Load Repetitions for Erosion Analysis Based on erosion factors" of book "Traffic and highway engineering" for
From figure 20.26, "Allowable Load Repetitions for Fatigue Analysis Based on Stress Ratio" of book "Traffic and highway engineering" for
From figure 20.27, "Allowable Load Repetitions for Erosion Analysis Based on erosion factors" of book "Traffic and highway engineering" for
The table showing the allowable repetitions for
Load | Fatigue analysis | Erosion analysis |
| Unlimited | Unlimited |
| | |
Table (1)
So the
Assume a slab
Calculate the equivalent stress.
From table 20.24, "Equivalent stress values for single axles and tandem axles" of book "Traffic and highway engineering" equivalent stress values can be obtained and for
The stress ratio is calculated as,
Substitute
From table 20.27, "Erosion factors for single axles and tandem axles (doweled joint, concrete shoulder" of book "Traffic and highway engineering" for
From figure 20.26, "Allowable Load Repetitions for Fatigue Analysis Based on Stress Ratio" of book "Traffic and highway engineering" for
Thus, the Fatigue analysis for
From figure 20.27, "Allowable Load Repetitions for Erosion Analysis Based on erosion factors" of book "Traffic and highway engineering" for
From figure 20.26, "Allowable Load Repetitions for Fatigue Analysis Based on Stress Ratio" of book "Traffic and highway engineering" for
From figure 20.27, "Allowable Load Repetitions for Erosion Analysis Based on erosion factors" of book "Traffic and highway engineering" for
The table showing the allowable repetitions for
Load | Fatigue analysis | Erosion analysis |
| Unlimited | Unlimited |
| unlimited | |
Therefore, the
Conclusion:
Therefore, the suitable depth of concrete pavement is
Want to see more full solutions like this?
Chapter 20 Solutions
Traffic And Highway Engineering
- 10.53 Water is pumped through a vertical 10-cm new steel pipe to an elevated tank on the roof of a building. The pressure on the discharge side of the pump is 1.6 MPa. What pressure can be expected at a point in the pipe 110 m above the pump when the flow is 0.02 m³/s? Assume T = 20°C.arrow_forward10.61 A pipeline is to be designed to carry crude oil (SG = 0.93, v = 10-5 m²/s) with a discharge of 0.10 m³/s and a head loss per kilometer of 50 m. What diameter of steel pipe is needed? What power output from a pump is required to maintain this flow? Available pipe diameters are 20, 22, and 24 cm.arrow_forwardCalculate the active earth pressure (exerted by the supported soil mass on the right) against the 10-meter-long, dense and smooth sheet pile wall shown in Figure E2:1. The ground surface is loaded with heavy construction machinery applying a pressure of q = 10.0 kPa. Other data is according to the figure.Assume the sheet pile moves sufficiently to the left to reach active failure conditions behind it, and passive failure conditions develop in the soil mass below the excavation bottom. Will the sheet pile wall hold without rain? (Calculate the forces.) Will the sheet pile wall hold if it rains? (Assume water-filled cracks.) If the sheet pile does not hold in any of the above cases – how deep would it need to be embedded in order to hold? Draw diagrams for active and passive earth pressure as well as the resultant earth pressure. gvy=grownd water levelarrow_forward
- The composite beam shown in the figure is subjected to a bending moment Mz=8 kNmMz=8kNm.The elastic moduli for the different parts are E1=30 GPa, E2=20 GPa, and E3=60GPa. a) Determine the reduced moment of inertia IredIred for the entire beam. b) Sketch the bending stress distribution in the beam.arrow_forwardUSING THE ATTACHED SKETCH , DETERMINE THE FOLLOWING: 1. INVERSE DISTANCE, NORTH AZIMUTH AND BEARING BETWEEN CP-102 AND THE SOUTHWEST BUILDING CORNER.2. DETERMINE THE INTERIOR ANGLE AT CP-101 - CP-102 AND THE SOUTHWEST BUILDING CORNER.3. WHAT ARE THE COORDINATES (N,E) AT POINT A AND POINT B IN THE ATTACHED SKETCH?arrow_forwardGiven the following Right Triangle, find the " Area by Coordinates" (Not B*H/2). Report to the nearest Sq. Ft. and to the nearest thousandth of an acre.arrow_forward
- 1) 4,739,281 SQ.FT. = ______________________ ACRES? 2) S 90°00'00" W IS ALSO KNOW AS WHAT CARDINAL DIRECTION? 3) CALCULATE THE NORTH AZIMUTH (NAZ) OF THE FOLLOWING BEARINGS: N 31° 22' 22" E=___________________________NAZ? S 87° 29' 17" W=___________________________NAZ? S 27° 43' 27" E=___________________________NAZ? N 43° 17' 43" E=___________________________NAZ?arrow_forward1) 187.25597°=_____________________________________(DEG-MIN-SEC FORMAT)? 2) CALCULATE THE BEARING AND DIRECTION IN DEG-MIN-SEC OF THE FOLLOWING: NAZ 142°49'18"=____________________________(BEARING/DIRECTION DEG-MIN-SEC)? NAZ 180°00'00"=____________________________(BEARING/DIRECTION DEG-MIN-SEC)? NAZ 270°00'00"=____________________________(BEARING/DIRECTION DEG-MIN-SEC)?arrow_forwardA traffic signal has a 60-second cycle length (Red time + Green time). For the travel direction of interest, the red and green times are 30 seconds each, the arrival rate is constant at 20 [veh/min] and the saturation flow (i.e., the departure rate) is 1 [veh/sec]. a. Calculate the average delay (for all vehicles) for the travel direction of interest. b. Assume a work zone on the street downstream of the intersection so that only 25 [veh/min] (in the direction of interest) can pass. Calculate the average delay caused by the work zone to a vehicle leaving the intersection. Assume that the queue at the work zone never backs- up into the intersection. c. Discuss qualitatively the implications of queue spillback from the work zone on the delay of the system. Traffic Direction (a) Traffic Direction (b)arrow_forward
- Calculate the active earth pressure (exerted by the supported soil mass on the right) against the 10-meter-long, dense and smooth sheet pile wall shown in Figure E2:1. The ground surface is loaded with heavy construction machinery applying a pressure of q = 10.0 kPa. Other data is according to the figure.Assume the sheet pile moves sufficiently to the left to reach active failure conditions behind it, and passive failure conditions develop in the soil mass below the excavation bottom. Draw diagrams for active and passive earth pressure as well as the resultant earth pressure. Questions to Answer: Will the sheet pile wall hold without rain? (Calculate the forces.) Will the sheet pile wall hold if it rains? (Assume water-filled cracks.) If the sheet pile does not hold in any of the above cases – how deep would it need to be embedded in order to hold?arrow_forwardQ.2- Design a flexible pavement by AASHTO method and draw typical cross section of the flexible Pavement for rural highway has following data: - Elastic modulus of Asphalt is 450000 Ib/in², Mr. of base-31000 psi, Mr. of subbase=13500 psi, CBR of base-100 CBR of subbase=22 subbase of subgrade =6 water removed with one week Percentage of time pavement structure is exposed to moisture levels-30% reliability=95% Standard deviation=0.45 initial serviceability=4.2 terminal serviceability=2.5 and ESAL=2*106 subgrade =1500 CBR Mr كلية . المنصور الجامعةarrow_forwardAssume that in earthquake-resistant design, the following relations take place: Y=ce, where Y is the ground motion intensity at the building site, X is the magnitude of an earthquake, and the constant c is related to the distance between the site and center of the earthquake. Assuming that X is exponentially distributed, fx (x)=ex with x 20 and >2, (a) Derive the PDF and CDF of Y, including the bounds, and sketch them. (b) Determine the median (i.e., 50%-fractile) and 90%-fractile (value of Y that has a probability of not being exceeded of 90%) of Y. (c) Determine the mean and variance of Y by using the PDF of Y derived under (a). (d) Determine the mean and variance of Y directly from the PDF of X.arrow_forward
- Traffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage LearningConstruction Materials, Methods and Techniques (M...Civil EngineeringISBN:9781305086272Author:William P. Spence, Eva KultermannPublisher:Cengage LearningFundamentals Of Construction EstimatingCivil EngineeringISBN:9781337399395Author:Pratt, David J.Publisher:Cengage,


