(a)
Find the monthly payment amount.
(a)
Answer to Problem 20P
The monthly payment amount is
Explanation of Solution
Given data:
The normal interest rate
The present value
The number of years
The number of interest compounding periods per year
Formula used:
Formula to calculate the uniform series payment with the given present cost is,
Here,
Calculation:
Substitute
Therefore, the monthly payment amount is
Conclusion:
Thus, the monthly payment amount is
(b)
Find the effective interest rate.
(b)
Answer to Problem 20P
The effective interest rate is
Explanation of Solution
Given data:
The present value
The number of years
The number of interest compounding periods per year
Formula used:
Formula to calculate the uniform series payment with the given present cost is,
Here,
Formula to calculate the effective interest rate is,
Calculation:
It is given that the bank charges
Substitute
Hence, the present value
Substitute
Reduce the equation as,
By using trial and error method, calculate the value of
(i) Interest rate of
Substitute
From the equation (6), it is clear that
(ii) Interest rate of
Substitute
From the equation (7), it is clear that
Substitute
Therefore, the effective interest rate is
Conclusion:
Thus, the effective interest rate is
Want to see more full solutions like this?
Chapter 20 Solutions
MindTap Engineering, 2 terms (12 months) Printed Access Card for Moaveni's Engineering Fundamentals, SI Edition, 5th
- 5.6 A section of highway has the following flow- density relationship q = 50k - 0.156k2 [with q in veh/h and k in veh/mi]. What is the capacity of the highway section, the speed at capacity, and the density when the highway is at one-quarter of its capacity?arrow_forward8.20 Two routes connect a suburban area and a city, with route travel times (in minutes) given by the expressions t₁ = 6 + 8(x₁/c₁) and t₂ = 10 + 3(x2/c2), where the x's are expressed in thousands of vehicles per hour and the c's are the route capacities in thousands of vehicles per hour. Initially, the capacities of routes 1 and 2 are 4000 and 2000 veh/h, respectively. A reconstruction project on route 1 reduces the capacity to 3000 veh/h, but total traffic demand is unaffected. Observational studies note a 35.28-second increase in average travel time on route 1 and a 68.5% increase in flow on route 2 after reconstruction begins. User-equilibrium conditions exist before and during reconstruction. If both routes are always used, determine equilibrium flows and travel times before and after reconstruction begins.arrow_forward8.19 Three routes connect an origin and a destination with performance functions t₁ = 8+ 0.5x1, t2 = 1 + 2x2, and t3 = 3 + 0.75x3, with the x's expressed in thousands of vehicles per hour and the 's expressed in minutes. If the peak-hour traffic demand is 3400 vehicles, determine user-equilibrium traffic flows.arrow_forward
- 8.8 onlyarrow_forward8.4 Consider a Poisson regression model for the number of social/recreational trips generated during a peak-hour period that is estimated by (see Eq. 8.3) BZ = -0.75 +0.025(household size) + 0.008(annual household income, in thousands of dollars) + 0.10(number of nonworking household members). Suppose a household has five members (three of whom work) and an annual income of $100,000. What is the expected number of peak-hour social/recreational trips, and what is the probability that the household will not make a peak-hour social/recreational trip?arrow_forward8.15 An origin-destination pair is connected by a route with a performance function t₁ = 8+ x1, and another with a function t₂ = 1 + 2x2 (with x's in thousands of vehicles per hour and t's in minutes). If the total origin-destination flow is 4000 veh/h, determine user-equilibrium and system-optimal route travel times, total travel time (in vehicle minutes), and route flows.arrow_forward
- 8.13 Consider the situation described in Problem 8.11. If the total number of trips remains constant, determine the amount of amusement floor space that must be added to destination 2 to attract an additional 50 social/recreational trips.arrow_forward5- A basic freeway has 3 lanes in each direction and is on flat terrain. It has a jam density of 190 veh/km and a capacity of 4750 veh/h. The spot speed of 5 cars was collected at the midpoint of a 3.4 km segment of this freeway. Vehicle Speed (km/hr) 1 86 2 89 3 95 4 5 99 100 a) Calculate the space mean speed b) Calculate the free flow speed based on the given information c) A directional weekday peak-hour volume of 4640 vehicles is observed, with 1320 vehicles arriving in the most congested 15-min period. If the traffic stream has 12% large trucks and buses determine the level of service 6- What are the steps that a 4-step model used to predict travel demand on roads network consists of? Briefly describe was sort of information each step provides? 7- The bitumen is a conventional bituminous binder has a penetration index of -1 and = 65°c. T800 pen a) Determine the stiffness modulus of this bitumen if the operating conditions are as follows: temperature of 25°c and loading time of…arrow_forwardQ) Find the location of centroid for the shaded area shown in Figure below. 20mm 42mm 23mm 30mm 30mm 10mm Xarrow_forward
- Question 5 (Force Method). Determine the reaction at the supports. Assume A is fixed and B and C are rollers. El is constant. 3 k/ft A 10 ft B 2 k/ft 10 ft Carrow_forwardFind the collapse load (Wu) for the one-end continuous beam shown below. Wu 6 marrow_forward4- As part of a highway interchange project, a ramp will be constructed to allow the vehicles exit the first highway and enter the second highway. The first highway runs north-south and the second one had a right angle to the first one (it runs east-west). Vehicles going to the north can use this exit ramp to enter the second highway as shown in the plan view in the figure below. The design speed in both highways is 100 km/hr. The stationing of the start of the horizontal curve is 40+00. a) Determine the stationing of PI and PT¶ b) The first highway has a vertical grade of +3.5% and the second highway has a grade of - 0.5%. The stationing of the beginning and the end of the crest curve are the same as the horizontal curve. What is the elevation of the end of the vertical curve (PVT) if the elevation of the start point (PVC) is 1500m c) Calculate K for the vertical curve Plan view (horizontal alignment) PT 1 N Profile view (vertical alignment) G1=0.5% PVT PC, 40+00 PVC G1=+3.5%arrow_forward
- Engineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage LearningFundamentals Of Construction EstimatingCivil EngineeringISBN:9781337399395Author:Pratt, David J.Publisher:Cengage,
- Traffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning